
A TRIDENT SCHOLAR
J PROJECT REPORT

NO. 149 co

I Multiple Fault Diagnosis System

7I

: UNITED STATES NAVAL ACADEMY
POIS-o MA.TANI DTIC

ELECTE

NOV 0 3 0

"be a d " * w f In..-

* ining s,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER
U.S.N.A. - TSPR; no. 149 (1988) =
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MULTIPLE FAULT DIAGNOSIS SYSTEM. Final 1987/88

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Bryan Paul Graham

9. PERFORMING ORGANIZATION NAME AND ADDRESS II. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

United States Naval Academy, Annapolis.

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

10 June 1988
United States Naval Academy, Annapolis. i. NUMBER OF PAGES

81
14. MONITORING AGENCY NAME & AODRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

15a. DECL ASSI FICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

':his document has been approved for public release; its distribution is
NLILMITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. If different from Report)

IS. SUPPLEMENTARY NOTES

Accepted by the U.S. Trident Schclar orumittee.

19. KEY WORDS (Continue on reverse side it necessary md Identify by block number)

Expert systems Tonmputer science)

Systems design

20. ABSTRACT (Continue on reverse side if neceseary and identify by block number)
he Na-y currently uses Automated Test Systems (ATEs) to diagnose faults

in most operational hardware units. There are numerous problems associated with
the use of ATEs. The problems that can be solved through the application of
improved technology involve high removal rate of good components, excessive
levels of fault ambiguity, and lack of a successful diagnosis. Inherent in the
-use of ATEs are the two problems which render ATE use inefficient. (OVER)

DO I JA"R 1473 EDITION OF I NOV 65 IS OBSOLETE
S N 0102- LF- 014- 6601 S U T CT,.IC TFT P ASECURITY CLASSIFICATION OFr THIS PAGE (When Data Entered().

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("h. Doe Entered)

They are expensive and highly specialized. A single multi-million dollar test

unit may only test a single hardware unit. One way to solve this problem is
to develop a single expert system which is knowledgable about circuit
operation in general and is thus able to diagnose faults in many different
hardware units. It will be able to make suggestions, in an interactive manner
with the technician, concerning the location of the next best test utilizing
information from an a priori failure rate database. Through a series of tests
on the unit under test (UUT), the expert system will correctly isolate the
fault.

The objective of this project was to develop a versatile, interactive
prototype of a fault diagnosis expert system capable of diagnosing multiple
faults in generic electronic component systems and to test this system over

several actual hardware setups capable of being faulted and subsequently
tested. -

The prototype system was developed using GOLDWORKS, an AI development
shell from Gold Hill Computers. This shell provided a frame-based development.
The working system was tested on several hardware setups constructed on

Hewlett-Packard 5035T Logic Lab breadboards. The resulting multiple fault
diagnosis system is a powerful tool to aid an electronics technician in
diagnosing faults in a digital circuit. It allows the technician not only to

interactively observe the model and test the faulty unit, but also allows the
system to make suggestions for the location of the next best test. The power of
this system lies in the fact that it utilizes knowledge about how circuits
operate and applies it to the diagnosis of many different types of circuits.

Acce os rn For

I r
. .I

S N 0102- LF-014.6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data t ntered)

U.S.N.A. - Trident Scholar project report; no. 149 (1988)

Multiple Fault Diagnosis System

A Trident Scholar Project Report

by

Bryan Paul Graham

Midshipman First Class, 1988

United States Naval Academy

Annapolis, Maryland

Professor Harrison

Acc ed for Trident cholar Committee

Chairperson

Date

USNA-1531-2

1

Multiple Fault Diagnosis System
Bryan P. Graham

United States Naval Academy

1. Background: The Navy currently uses Automated Test
Equipment (ATEs) to diagnose faults in most operational
hardware units. There are numerous problems associated with
the use of ATEs. The problems that can be solved through
the application of improved technology involve high removal
rate of good components, excessive levels of fault am-
biguity, and lack of a successful diagnosis. Inherent in
the use of ATEs are two problems which render ATE use inef-
ficient. They are expensive and highly specialized. A
single multi-million dollar test unit may only test a single
hardware unit. One way to solve this problem is to develop
a single expert system which is knowledgable about circuit
operation in general and is thus able to diagnose faults in
many different hardware units. It will be able to make sug-
gestions, in an interactive manner with the technician, con-
cerning the location of the next best test utilizing infor-
mation from an a priori failure rate database. Through a
series of tests on the unit under test (UUT), the expert
system will correctly isolate the fault.

2. Objectives: The objective of this project was to
develop a versatile, interactive prototype of a fault diag-
nosis expert system capable of diagnosing multiple faults in
generic electronic component systems and to test this system
over several actual hardware setups capable of being faulted
and subsequently tested.

3. Methodology and Results: The prototype system was
developed using GOLDWORKS, an AI development shell from Gold
Hill Computers. This shell provided a frame-based develop-
ment environment. The working system was tested on several
hardware setups constructed on Hewlett-Packard 5035T Logic
Lab breadboards. The resulting multiple fault diagnosis
system is a powerful tool to aid an electronics technician
in diagnosing faults in a digital circuit. It allows the
technician not only to interactively observe the model and
test the faulty unit, but also allows the system to make
suggestions for the location of the next best test. The
power of this system lies in the fact that it utilizes
knowledge about how circuits operate and applies it to the
diagnosis of many different types of circuits.

2

Table of Contents

1. INTRODUCTION

1.1. Current use of ATE's to Aiagnose hardware
problems

1.2. Expert Systems as a diagnosis tool
1.3. Objectives

2. DISCUSSION

2.1. Principle of operation
2.2. Constructing the model
2.3. Importance of choice of level of abstraction as

it affects locality and causal relationships
2.4. Testing the outputs and creation of the suspect

set
2.5. Testing to reduce the suspect set in the single-

fault case
2.6. Complications in the multiple-fault case
2.7. Isolating faults when the single fault constraint

is relaxed
2.8. Finding the best test through the computation of

gain

3. SAMPLE DIAGNOSIS SESSIONS

3.1. Single-fault case: 3-bit adder circuit
3.2. Multiple-fault case: 5-bit comparator

4. CONCLUSION

5. ACKNOWLEDGMENTS

6. BIBLIOGRAPHY

7. FIGURES

8. APPENDIX A

List of Figures

1. Simple Adder
2. Cascaded Low-Pass Filter
3. "Black-Box" Filter
4. 3-Bit Adder
5. 5-Bit Comparator

3

1. INTRODUCTION

1.1. Current use of ATE's to diagnose hardware problems

Every time the Navy introduces a new piece of opera-

tional hardware into the Fleet, it must also provide mil-

lions of dollars worth of test equipment to support its use.

The Navy currently uses Automated Test Equipment (ATE) to

diagnose faults in most operational hardware units. There

are numerous documented problems associated with the use of

ATEs.

o Not always successful

o High removal rate of good components

o Excessive levels of fault ambiguity

o Prohibitive cost

o Highly specialized to test only one unit

The first three of these problems can be solved through the

application of improved technology, but the latter two

problems are inherent in the use of ATEs. One way to solve

these problems is to develop a single expert system which is

able to diagnose faults in many different hardware units.

4

1.2. Expert systems as a diagnosis tool

One such expert system might be developed in an artifi-

cial intelligence environment using the LISP programming

language. Ideally, it would diagnose faults in many dif-

ferent hardware units and would operate interactively with a

technician. It would be able to make suggestions concerning

the location of the next best test utilizing information

from an a priori failure rate database. Through a series of

tests on the unit under test (UUT), the expert system will

correctly isolate the fault.

1.3. Objectives

The objectives of this project were to (1) develop a

versatile, interactive prototype of a fault diagnosis expert

system capable of diagnosing multiple faults in generic

electronic component systems and (2) to test this system

over several actual hardware setups capable of being faulted

and subsequently tested. The system was to be developed in

a LISP environment and be capable of implementation on a

personal computer.

5

2. DISCUSSION

2.1. Principle of operation

Using model-based reasoning, two items of knowledge are

necessary to correctly diagnose faults in electronic com-

ponent systems; how a unit is supposed to operate and how

that unit is actually operating. A model or simulation of

the unit is built and the operation of that model is com-

pared to the operation of the actual unit. From the statis-

tical difference in the values of their operation, in-

ferences can be made as to the location of the fault in the

unit. This type of inferencing is termed model-based

reasoning.

2.2. Constructing the model

Construction of a model involves knowiedge uonu~rning

the operation and the connectivity of all components within

the system. Describe each component as a transfer function

which maps inputs to outputs. These outputs are connected

to other components and values are propagated through the

unit. An example to illustrate the construction of a model

is the simple digital adder circuit shown in Figure 1.

6

Referring to the figure, Al is an AND gate with inputs

connected to Cl and C2 and output connected to C5. Assume

the input values are 1 and 0 (ON and OFF in the digital

sense.) The output value is then 0 arrived at from the

function of an AND gate. We can describe its presence in

the circuit, its connectivity and its state in the following

manner:

(Al (ANDGATE)

(CON (Cl C2)

(C5))

(VAL (1 0))

(OUT (0))

The transfer function (or the mapping of inputs to outputs)

of a component can be similarly represented. In a simplified

form the function of an AND gate can be described as:

(if Al is ANDGATE with

(VAL (0 0) or (1 0) or (0 i))

then (OUT (0)))

(if Al is ANDGATE with

(VAL (1 1))

then (OUT (1)))

7

In English this reads, if Al is an ANDGATE and has the

VALues (0 0) or (1 0) or (0 1), then its OUTput will be 0,

OR if Al is an ANDGATE with VALues (1 1), then its OUTput

will be 1. What has been supplied to the model is a func-

tional description of an AND gate which maps all possible

inputs to outputs.

Similar functional and connective descriptions are sup-

plied for each component in the circuit. If values are

placed in the circuit board's input ports (Il 12 13), then

those values can be propagated throughout the circuit using

the connectivity and function descriptions of the com-

ponents. All of this takes place within the model con-

structed in computer code.

The model provides a standard by which to compare and

test the actual circuit board. Without a model, it would be

nearly impossible to judge faulty circuit behavior properly.

This is the basic precept of model-based reasoning.

2.3. Importance of choice of level of abstraction as it af-

fects locality and causal relationships

The concepts of locality and causal reference are

directly dependent upon the level of abstraction which is

chosen to model electronic systems and strongly affects the

8

ability to model and diagnose faults in a system. If a com-

ponent supports locality, then the causal relationships that

stem from its operation affect only those components and

values that are direct neighbors in the component system.

For locality to occur, there must be a direct causal path

that extends only to each component's immediate neighbor.

This notion of locality is directly dependent upon our

choice of level of abstraction of the system.

Due to the level of abstraction chosen to depict the

cascaded low-pass filter in Figure 2, the concept of

locality does not apply. The input to that system is Vs and

its output is Vo taken across the capacitor C2. Locality

does not apply because each component in the system not only

affects the voltages and currents to its neighbors, but

directly affects the values found throughout the circuit.

There is no direct causal path from one component to another

because they a.e all interdependent. For example, assume

the resistor Rl shorts out; this short circuit raises the

current through C2 and increases the output voltage Vo . Due

to the interdependence of all components, the causal

relationships involved in the operation of R1 extend past

the direct neighbors, thus locality is not present.

9

The main problem associated with lack of locality is

the difficulty in modeling such systems. The computational

expense of applying Kirchoff's voltage and current laws,

along with Ohm's law (for a computer), to the cascaded fil-

ter would be fairly large, again due to the interdepen-

dencies of all components involved. To solve this problem,

we can choose a different level of abstraction with which to

view the problem. In this example, transform the four com-

ponents of the cascaded filter into a single "black box" as

shown in Figure 3 with the same input and output. A single

transfer function G(Vs) takes the place of the applied rules

that had previously modeled the circuit at a lower level of

abstraction. Locality now applies to the system because the

cascaded filter is only directly affected by its neighbor Vs

and it only directly affects its neighbor Vo . This

abstracted component may now be placed in a larger system

while preserving locality of reference.

If a component's causal relations only affect the sys-

tem through the influence of its neighbors, and locality ap-

plies, then diagnosis becomes a much easier task. If we try

to diagnose the short-circuited capacitor, C1 in Figure 2.,

we would eventually take measurements at each node in the

circuit. This would not be a problem for this circuit be-

cause there are only four nodes which car be tested. As sys-

tems increase in size this approach would become unfeasible.

10

So, we would raise the level of abstraction to introduce

locality to the problem and then begin diagnosis. The input

voltage applied at Vs is correct, and the output voltage Vo

is incorrect, thus the fault must lie within the cascaded

filter. Obviously, we have lost something in the transla-

tion to a higher level of abstraction; we have lost the

ability to diagnose faults of a finer granularity. But when

placed in circuits of greater complexity and larger numbers

of components, what is gained through locality is tremen-

dous.

2.4. Testing the outputs and creation of the suspect set

Once the model has been either created or loaded from a

centrll database, diagnosis may begin. The first step is to

test outputs. This provides a direction for diagnosing the

faulty component because the UUT itself can be thought of as

a black box. Its inputs are mapped through the structure

and function of each of its components to the unit's out-

puts. Thus, any fault occurring in an individual component

will cause an incorrect output to appear in the UUT. The

diagnosis system recognizes this fault when comparing the

model's expected outputs to the UUT's observed output.

11

To test the outputs of the UUT, inputs must be supplied

to both the model and the UUT. To test the unit fully, we

must apply the inputs in a systematic manner. A digital cir-

cuit has a finite number of input sets and by testing the

circuit over all of these inputs we can be certain that all

faults will be isolated. Only through the application of

all input sets, may fault coverage be achieved in a digital

circuit.

Once the input set has been applied to both the model

and the UUT circuit inputs, we must test each output of the

actual circuit for correctness. UUT output values are com-

pared with the model output values. From the knowledge of

the outcome of the test (OK/BAD), a hypothesis is formulated

concerning the possible cause of the fault.

A fault hypothesis takes the form of a suspect set. A

suspect set is the set of components that could possibly be

responsible for a given fault in the circuit's output.

Structurally, it is the set of components that uniquely

determine a value at the faulty output (the components that

were responsible for propagating a value to the particular

output or its source list).

12

Again consider the adder example in Figure 1. If the

output at S returned a faulty value then the suspect set

created would be (RI R2) because these two gates alone gen-

erate the output at S. If C were to be faulty, then the

suspect set would appear as (R1 Al A2 01). Logically, if

both outputs of the UUT generated faulty values, then all

components in the circuit would be suspect.

A component's absence from the suspect set does not,

however, assure its correct operation, only its innocence in

explaining a particular fault of the outputs. For example,

in the adder circuit suppose that we found the output at 0-1

to be faulty and the suspect set generated was (Xl X2). The

AND gate A2 is not present in the suspect set, but assume it

is malfunctioning. Its faulty output might be masked from

the output 0-2 by a value of 1 at C5 going into the OR gate

01. The output at 0-2 is still correct in spite of the fact

that A2 is misbehaving.

This presents a difficult problem inasmuch as a com-

ponent might be faulty and not be present in the suspect

set. To correct this special case, apply all possible in-

puts to the circuit and assume that one particular input set

will provide the values necessary to place the faulty com-

ponent in the suspect set. Thus, fault coverage has been

13

achieved by testing the circuit over all possible inputs

rather than trying to do so by expanding the suspect set to

cover faults not directly causing a faulty output.

It is important to remember that the suspect set is

formed from the set of components that could possibly ex-

plain a given faulty output. Components that might be

faulty, but do not cause an incorrect output, are included.

It is therefore possible to have a unique suspect set for

each set of inputs.

2.5. Testing to reduce the suspect set in the single-fault

case

After creation of the suspect set, the next step is to

reduce this suspect set to a single component to fully iso-

late the fault. To accomplish this end, tests must be made

and knowledge collected on the actual operation of the UUT.

Test results from the UUT are compared to the values derived

from the model. Discrepancy or agreement between these two

values yields knowledge concerning UUT component operation.

Thus, through a series of tests, individual component cor-

rectness or faultiness can be validated and therefore

removed from or asserted to the suspect set. To this end,

the knowledge obtained from UUT tests is ultimately aimed at

14

reducing the suspect set to a single component. That com-

ponent is the sole source of the faulty values observed at

the board's output ports.

Consider a series of tests on the 5-Bit Comparator in

Figure 5. We have previously tested the outputs, L2, L3,

and L4 and the results of those tests were (L2 OK), (L3

BAD), (L4 BAD). Our suspect set now contains all components

in the circuit. We first choose to perform a test at node

C16. (This may or may not be a good choice for a test, as

will be discussed later.)

Assume the test performed at C16 returns an incorrect

value. We now know two things, (1) that there is only one

fault, (we made that constraint to begin with), and (2) the

faulty component propagates its improper value through C16

on its way on the board output. Therefore, the fault must

lie somewhere in the components responsible for propagating

values to that node. In other words, the source-list for

C16. This source-list is: (N5 V6 Al N4 V3 N2 V2 N1 Vl).

All other components can then be removed from the suspect

set. Those components which have been removed then con-

stitute the reduction set resulting from the bad test, or

RSbad•

15

The occurrence of a good test is somewhat more compli-

cated. If the test at C16 returns a correct value then the

same reasoning doesn't follow that all modules in that

node's source-list are assumed to be operating correctly.

Only the component that is directly responsible for the

value at the test node may be immediately removed from the

suspect set. This is because it alone is not creating a

fault which could be propagated through the test node to the

outputs. To illustrate the reasoning behind this more

clearly, assume the AND gate Al is malfunctioning in our

5-Bit Comparator. This malfunction causes a faulty value at

C11 and through C20 it is propagated to the outputs, but be-

cause of the truth-table associated with the three-input

NAND gate N5, the fault is "masked" from appearing at C16.

Superficially, this poses a particularly difficult

problem with regard to reduction of the suspect set: a good

test will only remove one component from the suspect set,

because a good test does not necessarily validate the cor-

rect operation of that node's source-list. Upon further in-

vestigation, however, we see that this is not truly the

case. Again, back to our example of a good first test at

C16. We can immediately remove N5 from the suspect set. Now

consider other components such as the inverter V6. If V6

were to fault, and propagate that fault to the outputs, the

fault must be propagated through the node C16. Therefore,

16

if a good test were conducted at C16, then the set of com-

ponents removed from the suspect set, resul~ing from a good

test or RSok are (N5 V6).

But why then can't we remove Al as well? What is the

difference between Al and V6? They are both members of

C16's source-list. The difference lies in the fact that a

fault at V6 must propagate through C16 to the board outputs,

i.e. we can say that it is a positively unmasked parent of

C16. When we examine Al, we see that if it is faulty, its

faults may be passed to both N5 and A4 and may be masked by

those gates operation at either C16 or C20. Therefore, Al

is a possibly masked parent of C16 and C20. Only through

testing and finding correct values at both C16 and C20, may

we remove Al from the suspect set.

It would now seem that a good test is relatively weak

compared to a bad test in terms of reducing the suspect set.

This however, is not truly the case. While it is true that

a randomly chosen test will generally have only one or two

members in its RSok, two or more good tests performed in

conjunction can be fairly powerful in reducing the suspect

set. Again assume that all components in the comparator

are suspect and our first chosen test is C25. The node C25

has an RSok of (A6 N8 V7) and it returns a good value.

Those components are removed from the suspect set and the

17

next test chosen is C26. Taken alone, the node C25 has an

RSok of (A5 N7 V8), but since a test at C25 has already

returned a value of OK, and all faults generated on the left

side of C25 and C26 must pass through those nodes to reach

the outputs, a good test at C26 will remove all components

to the left of C25 and C26.

Thus, certain tests when chosen correctly singly, or in

combination with other tests, can work to reduce the suspect

set significantly when either a correct or incorrect value

is observed.

2.6. Complications in the multiple fault case

Testing to reduce the suspect set in the single fault

case is a relatively simple and straightforward process.

When multiple faults are introduced, the process becomes

much more complicated. The main difficulty in diagnosing a

multiple fault case lies in determining what test results

actually reveal concerning the UUT's true operation.

As in a single fault case, an OK test does not

guarantee the correct operation of all components in that

test's source list, but as the single-fault constraint is

relaxed, a BAD test does not rule out the chance that a

fault might lie outside of the test's source list. In other

18

words, when a BAD test occurs the components that are not in

the test's source list cannot be removed from the suspect

set because they might also be faulty.

There are several approaches to diagnosis in the mul-

tiple fault case. Two of note are Belief Revision in

Bayesian Networks using Message Passing (Geffner and Pearl

1987), and Minimal Entropy Modeling. These two were found

to be extremely complicated and computationally expensive.

The approach used in this project was to isolate faults

singly, correct the faults and then proceed to diagnose the

other faults present in the system. Part of the information

from each diagnosis acted to constrain the search for subse-

quent faults.

2.7. Isolating faults when the single fault constraint is

relaxed

The single fault constraint we placed on our diagnosis

earlier was in itself, quite a powerful tool for reducing

the suspect set. When that constraint is no longer avail-

able, the diagnosis becomes more difficult by at least an

order of magnitude. The approach taken in this project is

to use the power of the single fault constraint to diagnose

a fault, correct that fault, and then in essence begin again

diagnosing the circuit.

19

Returning to our 5-bit comparator, assume that both V8

and V11 are faulty. Proceeding with our usual diagnosis, we

make tests at ((C23 BAD) (Cl OK) (C12 OK) (C17 OK) (C21

BAD)). At this point we have correctly diagnosed the fault

located at V8, but we have not addressed the fault located

at Vii. We then correct the fault at VS, retest the outputs

and begin again. It would seem a waste to completely throw

out all knowledge we already have gained from the circuit;

perhaps some of it still holds true. The tests made at ClI,

C12 and C17 are good and lie upstream from the fault diag-

nosed at V8, thus the components that were removed from the

suspect set as a result of those tests cannot possibly be

responsible for any other faults with respect to this input

set.

Assume that while trying to diagnose VS we also took a

test at C30 and it returned OK, can we immediately validate

the correct operation of N10 and V9 for the subsequent diag-

nosis? The answer is no. If a fault were to lie at V9

(remember, we do not know how many faults there are in the

system,) then the OK value found at C30 might be changed to

an incorrect value when the fault at V8 is corrected. This

is because C30 lies downstream from V8. Thus, any test that

previously returned an OK value and lies outside the values

generated by the recently corrected faulty component may be

20

used to immediately reduce the suspect set. The diagnosis

proceeds accordingly until a correct output is observed for

the entire system.

2.8. Finding the best test through the computation of gain

An important feature of our expert system should be the

ability to suggest the next best test for the isolation of

the fault. One way to locate the best location for the next

test is through the computation of an expected gain as-

sociated with each possible test in the system. This gain is

based upon how a test might reduce the suspect set and is

weighted according to the failure rates of their respective

reduction sets.

It would seem that the greater a test's reduction

set, then the faster a suspect set could be reduced.

However, this is not the case if the test returns a correct

value. Thus, the best test is one which would reduce the

suspect set by exactly one-half. The major drawback here is

that we haven't taken into account any type of past failure

rate knowledge.

To correct this shortcoming, the size of the reduction

set of a test can be weighted according to the a priori

failure rates of the components within that set. This is

21

termed the gain of a set. Mathematically, a gain is the sum

of failure rates of a given set of components. To speak of

the gain of a test, then, means to take the gain of that

test's reduction set. The optimal gain for a test is one

half of the sum of the failure rates of the suspect set (or

gain of the suspect set). Thus, the result of a test will

optimally reduce the suspect set by one half and weighed

toward one half or another according to the component

failure rates associated with each test's reduction set.

Again consider the adder circuit in Figure 1. We have

already tested the outputs of the circuit and have found the

output at 0-1 to be correct, and the output at 0-2 to be

faulty. We have then validated the operation of Al by a

correct test at C5. Thus our suspect set is (Xl A2 01).

The set of possible tests that are relevant to the suspect

set is (Cl C2 C3 C4 C6 C8). Of these tests only C4, C6, and

C8 reduce the suspect set (i.e. they have reduction sets).

Their reduction sets are:

C4: (Xl)

C6: (Xl A2)

C8: (Xl A2 01)

22

Each of these tests will perform useful work on the suspect

set. We must choose the test which will reduce the suspect

set regardless of the result of that test (OK/BAD) and also

take into account the past failure rates of each component

in the suspect set. To do so, we look into our a priori

failure rate database and find the failure rates of these

components to be:

XOR Gate: .025

AND Gate: .010

OR Gate: .015

These failure rates represent the actual field-tested a

priori failure rate of each type of component. To find the

optimal gain for the next test, we sum the failure rates of

all components in the suspect set and divide by 2.

Optimal Gain = (.025 + .010 + .015) / 2 = .025

Now we wish to choose the test whose gain is closest to this

optimal value. Taking the gains of each test:

C4 = .025

C6 = .025 + .010 = .035

C8 = .025 + .010 + .015 = .050

23

A test at C4 is closest to optimal. Logically this follows

because the a priori failure rate for XOR gates is greater

than the sum of the failure rates of the other two. If the

test at C4 is found to be bad (statistically, this will hap-

pen more often than not) we have found our fault in com-

ponent Xl. Otherwise, we narrow the suspect set to two com-

ponents, A2 and 01.

What is accomplished by choosing the next test accord-

ing to computed gain is two-fold: it chooses the test that

will reduce the suspect set most efficiently and also iso-

lates the fault that occurs more frequently.

24

3. SAMPLE DIAGNOSIS SESSIONS ON TWO DIGITAL CIRCUITS

3.1 Single-Fault Case: 3-Bit adder circuit in Figure 4.

FAULT: R3

INPUT SET: ((X3 1)(X2 0)(X1 1)(Y3 0)(Y2 0)(Yl 1))

Test Outputs: ((C BAD) (S3 BAD) ($2 BAD) (Si OK)

Suspect Set: (Ri Al A2 01 R3 R4 A3 A4 02 R5 R6 A5 A6

03)

Best Test: C13

Make Test #1: (C13 BAD) Remove (R4 A3 02 R5 R6 A5 A6)

Suspect Set: (R1 Al A2 01 R3 A4)

Best Test: C6

Make Test #2: (C6 OK) Remove (Ri A2)

Suspect Set: (Al 01 R3 A4)

Best Test: C10

Make Test #3: (C10 OK) Remove (Al 01)

Suspect Set: (R3 A4)

Best Test: C9

Make Test #4: (C9 BAD) Remove (A4)

Suspect Set: (R3) -- FAULT DIAGNOSED!

25

3.2 Multiple-Fault Case: 5-Bit comparator in Figure 5.

FAULT: (V8 V11)

Test Outputs: ((L2 BAD) (L3 OK)(L4 BAD))

Suspect Set: (All components except Ri)

Best Test: C23

Make Test #1: (C23 BAD)

Remove (V10 V7 V6 N5 A3 N8 A6 N9 A5 A8 V12 V9 NI0 A7

Y11)

Suspect Set: (V2 V3 N2 N4 V1 Al V4 N3 A2 V5 N6 A4 V8

N7)

Best Test: C1i

Make Test #2: (Cii OK) Remove (Al N4 V2 V3)

Suspect Set: (Vi N1 V4 N3 A2 V5 N6 A4 V8 N7)

Best Test: C12

Make Test #3: (C12 OK) Remove (A2 N3 V4 Ni Vi)

Suspect Set: (V5 N6 A4 V8 N7)

Best Test: C17

Make Test #4: (C17 OK) Remove (V5 N6)

Suspect Set: (A4 V8 N7)

Best Test: C21

26

Make Test #5: (C21 BAD) Remove (A4 N7)

Suspect Set: (V8) -- FIRST FAULT DIAGNOSED!

Correct Fault at V8.

Test Outputs: ((L2 OK)(L3 BAD)(L4 OK))

Tests: ((C17 OK) (C12 OK) (Cli OK)) Still hold true.

Suspect Set: (R1 V11 A7 N10 V9 V12 A8 A5 N7 V8 N9 A6

A4 N8 A3 VI0 VII)

Best Test: C29

Make Test #6: (C29 OK) Remove (VI0 N9)

Suspect Set: (RI V1i A7 NI0 V9 V12 A8 A5 N7 V8 A6 A4

N8 A3 Vii)

Best Test: C25

Make Test #8: (C25 OK) Remove (V7 N8 A6)

Suspect Set: (Ri Vll A7 V12 A8 A5 N7 V8 V6 A3 N5 A4)

Best Test: C26

Make Test #9: (C26 OK) Remove (V6 N5 A3 A4 V8 N7 A5)

Suspect Set: (RI Vi A7 Vi2 A8)

Best Test: C34

Make Test #10: (C34 OK) Remove (A8 V12)

Suspect Set: (Ri Vii A7)

Best Test: C33

27

Make Test #1: (C33 BAD) Remove (RI)

Suspect Set: (Vll A7)

Best Test: C31

Make Test #12: (C31 OK) Remove (A7)

Suspect Set: (Vii) -- SECOND FAULT DIAGNOSED!

28

4. CONCLUSION

Toward the completion of the stated objectives of this

Trident Scholar research project, the prototype system was

developed using GOLDWORKS, an AI development shell from Gold

Hill Computers, which provided a frame-based development en-

vironment. The working system was then tested on several

hardware setups constructed on Hewlett-Packard 5035T Logic

Lab breadboards. The code which constructed the framework

of the system can be seen in Appendix A.

The multiple fault diagnosis system described above is

a powerful tool to aid an electronics technician in diagnos-

ing faults in a digital circuit of nearly any size. It al-

lows the technician not only to interactively observe the

model and test the faulty unit, but also to allow the system

to make suggestions for the location of the next best test.

Although the discussion above has been limited to digital

circuits, the same principles of model-based reasoning can

be applied to analog circuits as well.

The power of this system lies in the fact that it util-

izes knowledge about how circuits operate and applies it to

the diagnosis of many different types of circuits, something

which is inherently impossible in the use of ATEs and

renders their use terribly inefficient. The potential gains

29

for the Navy in continuing research in this field are

tremendous. It is conceivable that through the implementa-

tion of a generic fault diagnosis system in place of ATEs,

the Navy could save millions of dollars and thousands of man

hours and reduce equipment down-time while enhancing proper

hardware operation.

5. ACKNOWLEDGMENTS

Special thanks are extended to Professor Pat Harrison,

Computer Science Department U.S. Naval Academy, whose assis-

tance and guidance made this Trident Research Project pos-

sible.

30

BIBLIOGRAPHY

Addis,T.R. Designing Knowledge Based Systems. (Prentice-

Hall, Englewood Cliffs,N.J., 1986).

Author, IEEE Guide to the Use of Atlas. (IEEE, New York,

1984).

Author, IEEE Standard ATLAS Test Language. (IEEE, New York,

1984).

Ben-Basset, M. "Myopic Policies in Sequential Analysis."

IEEE Transactions on Computers. 27(1978),170-174.

Ben-Bassat, M. "Multimembership and Multiperspective Clas-

sification: Introduction, Applications, and a Bayesian

Model." IEEE Transactions On Systems, Man and Cybernetics.

10(1980),331-336.

Bobrow, D.G. (Ed.) Qualitative Reasoning About Physical Sys-

tems. (MIT press, Cambridge Mass.,1985).

de Kleer, J. "AI Approaches to Troubleshooting." in J.J.

Richardson (Ed.) Artificial Intelligence in Maintenance.

(Noyes Publications, Park Ridge, N.J., 1985) 79-89.

31

deKleer,J. "Causal and Teleological Reasoning In Circuit

Recognition." Technical Report AI-TR-529, MIT, Cambridge,

Mass., 1979.

de Kleer, J. & B.C. Williams. "Diagnosing Multiple Faults."

Artificial Intelligence. 32(1987) 97-130.

Geffner, H. & J. Pearl. "Distributed Diagnosis of Systems

With Multiple Faults." in: Proceedings Third Conference on

Artificial Intelligence Applications. Orlando, Fl(1987)

224-230.

Hamscher, Walter. Using Structural and Functional Informa-

tion in Diagnostic Design. Diss. Massachusetts Institute

of Technology at Boston, 1979.

Marrone, M.P. & W.M. Spears. "FIS Users Guide" Rev 1.3., Un-

published Guide,1987.

Moorthy, V.S. & B. Chandrasekaran. "A Representation For The

Functioning of Devices That Support Compilation Of Expert

Problem Solving Structures." in: J.J.Richardson(Ed.) Artifi-

cial Intelligence in Maintenance. (Noyes Publications, Park

Ridge, N.J., 1985) 123-143.

32

Pazzani, Michael J. "Failure-Driven Learning of Fault Diag-

nosis Heuristics." IEEE Transactions. SMC-17 (1987) 380-

394.

Pearl, J. "Fusion, Propagation, and Structuring in Belief

Networks." Artificial Intelligence. 29(1986) 241-288.

Peng, Y. and James A. Reggia. "Plausibility of Diagnostic

Hypotheses: The Nature of Simplicity." in: Proceedings

AAAI-86 I. Philadelphia,PA (1986) 140-145.

Pipitone, F., K. DeJong, W. Spears, & M. Marrone. "The FIS

Electronic Troubleshooting Project", Unpublished draft

report, 1987.

Roylance, G. "Simple Models of Circuit Design." Technical

Report 703, MIT, Cambridge, Mass., 1980.

Scarl, E.A., J.R. Jamieson & C.I. Delaune. "Diagnosis and

Sensor Validation through Knowledge of Structure and

Function." IEEE Transactions. SMC-17 (1987), 360-368.

Shore, J.E. "Relative Entropy, Probablistic Inference and

AI." in: Kanal,L.N. & Lemmer,J.F. (Eds.) Uncertainty in Ar-

tificial Intelligence. (Elsevier Science Publishers, North

Holland, 1986), 211-215.

33

II3

C

Figure 1. Simple Adder

34

Figure 2. Cascaded Low-Pass Filter

35

Figure 3. Black-Box Filter

36

X, c C

CIO

x -'- Cl 5

A5 4, c ' o

Figure 4. 3-Bit Adder

37

cqz

AS19A-

Wi. r 5. 5 Bt Com arto

A38

APPENDIX A

-*- Mode:LISP; Package:GW; -*-
;;;

GoldWorks Knowledge Base
;;;

;;; Dumped on 12:43pm 31-Mar-88
For registered user: HARRISON USNA

;;;

;; Portions of Knowledge Base saved:
(FRAME RELATION INSTANCE ASSERTION RULE)

;;;

(in-package 'gw)

(DEFINE-FRAME THE-DIAGNOSIS-SYSTEM
(:print-name "THE-DIAGNOSIS-SYSTEM"
:doc-string ""
:is TOP-FRAME))

(DEFINE-FRAME CIRCUIT-MODULE
(:print-name "CIRCUIT-MODULE"
:doc-string ""
:is TOP-FRAME)
(SOURCE-LIST))

(DEFINE-FRAME INFERENCE-ENGINE
(:print-name "INFERENCE-ENGINE"
:doc-string ""
:is THE-DIAGNOSIS-SYSTEM)

(INPUT-NUM
:default-values (0)
:constraints (:LISP-TYPE NUMBER))

(INPUT-LIST)
(OUTPUT-LIST)
(INPUT-PORT-LIST)
(OUTPUT-PORT-LIST)
(JUNCTION-LIST)
(CONNECTOR-LIST)
(ISET-NUM

:default-values (0)
:constraints (:LISP-TYPE NUMBER))

(INPUT-SET-LIST)
(OUTPUT-STATE

:default-values (0)
:constraints (:ONE-OF (0 1)))

(ACTUAL-OUTPUT-LIST)
(SUSPECT-LIST)
(TEST-LIST)
(TEST-STATE

:default-values (0)

39

:constraints (:ONE-OF (0 1)))
(TESTHADE-LIST)
(BEST-TEST)
(REMOVED-LIST)
(JUST-REMOVED)
(FAULT)
(FAULTY-LIST))

(DEFINE-FRAME USER-INTERFACE
(:print-riame "USER-INTERFACE"
:doc-string Il
is THE-DIAGNOSIS-SYSTEM)

(STATUS
:constrainits (:ONE-OF (:NO :VIEW :CLEAR :CLEAR-SINGLE

:CREATE-INPUTS :APPLY-INPUTS :BEST-TEST :MAKE-TEST
:CHECK-OUTPUT : FORGET-ALL :DIAGNOSE-NEXT)))

(DISPLAY-MODULE)
(INSTRUCTIONS))

(DEFINE-FRAME JUNCTION
(:print-name "JUNCTION"
:doc-striig Il
is CIRCUIT-MODULE))

(DEFINE-FRAME BOARD-PORT
(:print-name "BOARD-PORT"
:doc-string Il
is CIRCUIT-MODULE)

(VAL
:conistraints (:ONE-OF (0 1)))

(CONN))

(DEFINE-FRAME CONNECTOR
(:print-name "CONNECTOR"
:doc-string Il
is CIRCUIT-MODULE)

(VAL
:constrainits (:ONE-OF (0 1)))

(TEST-REMOVED)
(TEST-DEPENDENT))

(DEFINE-FRAME 2-iJUNCTION
(:print-name "12-iJUNCTION"1
:doc-strixg Il
:is JUNCTION)

(Il-VAL
:constraints (:ONE-OF (0 1)))

(12-VAL
:constraints (:ONE-OF (0 1)))

(0-VAL
:conistraints (:ONE-OF (0 1)))

(I1-CONN)

40

(12-CONN)
(O-CONN))

(DEFINE-FRAME 3- iJUNCTION
(:print-name "3-iJUNCTION"
:doc-strixg Il
:is JUNCTION)

(I1-CONN)
(12-CONN)
(13-CONN)
(Ii -VAL

:when-modified (NAND-31-TRANSFER-FUNCTION)
:constraints (:ONE-OF (0 1)))

(12-VAL
:when-modified (NAND-31-TRANSFER-FUNCTION)
:constraints (:ONE-OF (0 1)))

(13-VAL
:when-modified (NAND-31I-TRANSFER-FUNCTION)
:constraints (:ONE-OF (0 1)))

(O-CONN)
(0-VAL

:constrainits (:ONE-OF (0 1))))

(DEFINE-FRAME 1-iJUNCTION
(:print-name "1l-1JUNCTION"
:doc-string Il
:is JUNCTION)

(I-CONN)
(I.-VAL

:when-modified (INVERTER-TRANSFER-FUNCTION)
:constraints (:ONE-OF (0 1)))

(O-CONN)
(0-VAL

:constraints-(:ONE-OF (0 1))))

(DEFINE-FRAME BOARD-OUTPUT-PORT
(:print-name "BOARD-OUTPUT-PORT"
:doc-string Il
:is BOARD-PORT)

(VL:when-modified (UPDATE-OUTPUT-LIST)))

(DEFINE-FRAME BOARD-INPUT-PORT
(:print-name "BOARD-INPUT-PORT"
:doc-string Il
:is BOARD-PORT)

(VAL
:when-modified (UPDATE-INPUT-LIST)))

(DEFINE-FRAME 2-PORT-CONNECTOR
(:print-name "12-PORT-CONNECTOR"
:doc-string

41

:is CONNECTOR)
(VAL)
(CONN-1)
(CONN-2))

(DEFINE-FRAME 3-PORT-CONNECTOR

(:print-riame "13-PORT-CONNECTOR"
:doc-string Il
is CONNECTOR)

(CONN-1)
(CONN-2)
(CONN-3))

(DEFINE-FRAME NANDGATE
(:print-name "NANDGATE"l
:doc-string Il
:is 2-iJUNCTION)

(12 -VAL
:when-modified (NAND-TRANSFER-FUNCTION))

(Il-VAL
:wheri-modified (NAND-TRANSFER-FUNCTION)))

(DEFINE-FRAME NORGATE
(:print-name "NORGATE"
:doc-string Il
:is 2-iJUNCTION)

(12 -VAL
:when-modified (NOR-TRANSFER-FUNCTION))

(Il-VAL
:when-modified (NOR-TRANSFER-FUNCTION)))

(DEFINE-FRAME ORGATE
(:print-riame "ORGATE"
:doc-string Il
:is 2-iJUNCTION)

(12 -VAL
:wheri-modified (OR-TRANSFER-FUNCTION))

(Il-VAL
:when-modified (OR-TRANSFER-FUNCTION)))

(DEFINE-FRAME ANDGATE
(:print-name "ANDGATE"
:doc-striig Il
:is 2-iJUNCTION)

(12 -VAL
:when-modified (AND-TRANSFER-FUNCTION))

(Il-VAL
:when-modified (AND-TRANSFER-FUNCTION)))

(DEFINE-FRAME XORGATE
(:print-name "XORGATE"
:doc-string

42

:is 2-1JUNCTION)
(12-VAL

:when-modified (XOR-TRANSFER-FUNCTION))
(Il-VAL

:when-modified (XOR-TRANSFER-FUNCTION)))

(DEFINE-FRAME NANDGATE-3I
(:print-name "NANDGATE-31"
:doc-string I'll
:is 3-1JUNCTION))

(DEFINE-FRAME INVERTER
(:print-name "INVERTER"
:doc-string ",,
:is 1-IJUNCTION))

(DEFINE-INSTANCE INF-ENG-DATA
(:is INFERENCE-ENGINE))

(DEFINE-INSTANCE YO
(:print-name "Y0"
:doc-string I'll
:is BOARD-INPUT-PORT)

(SOURCE-LIST (YO))
(CONN C24)
(VAL 0)

(DEFINE-INSTANCE Y1I(:print-name "YI"
:doc-string I'll
:is BOARD-INPUT-PORT)

(SOURCE-LIST (Yl))
(CONN C18)
(VAL 0)I)

(DEFINE-INSTANCE Y2
(:print-name "Y2"
:doc-string I'll
:is BOARD-INPUT-PORT)

(SOURCE-LIST (Y2))
(CONN C13)
(VAL 1)
)

(DEFINE-INSTANCE Y3
(:print-name "Y3"
:doc-string I'll
:is BOARD-INPUT-PORT)

(SOURCE-LIST (Y3))
(CONN C6)

43

(VAL 0)
)

(DEFINE-INSTANCE Y4
(:print-name "Y4"
:doc-string I'l
:is BOARD-INPUT-PORT)

(SOURCE-LIST (Y4))
(CONN Cl)
(VAL 0))

(DEFINE-INSTANCE Xl
(:print-name "XI"
:doc-string ""
:is BOARD-INPUT-PORT)

(SOURCE-LIST (Xl))
(CONN WI)
(VAL 0)
)

(DEFINE-INSTANCE XO
(:print-name "X0"
:doc-string ""
:is BOARD-INPUT-PORT)

(SOURCE-LIST (XO))
(CONN WO)
(VAL 0)
)

(DEFINE-INSTANCE X2
(:print-name "X2"
:doc-string ""
:is BOARD-INPUT-PORT)

(SOURCE-LIST (X2))
(CONN W2)
(VAL 1)
)

(DEFINE-INSTANCE X3
(:print-name "X3"
:doc-string ""
:is BOARD-INPUT-PORT)

(SOURCE-LIST (X3))
(CONN W3)
(VAL 0)
)

(DEFINE-INSTANCE X4
(:print-name "X4"
:doc-string ""
:is BOARD-INPUT-PORT)

44

(SOURCE-LIST (X4))
(CONN W4)
(VAL 0))

(DEFINE-INSTANCE L2
(:print-name "L2"
:doc-string ""
: is BOARD-OUTPUT-PORT)

(SOURCE-LIST
(L2 C33 VII C31 A7 C25 A6 C36 N8 C19 V7 C30 N10 WO

X0 C26 A5 C22 A3 C16 N5 C14 V6 C23 N7 C18 Yi C20 A4 C17
N6 C12 A2 CI0 N3 C8 V4 C15 V5 C13 Y2 W2 X2 ClI Al C4 Ni
C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3
C21 V8 W1 Xl C27 V9 C24 YO))

(CONN C33)
(VAL 0))

(DEFINE-INSTANCE L3
(:print-name "L3"
:doc-string "'
:is BCkRD-OUTPUT-PORT)

(SOURCE-LIST
(L3 C35 Ri C33 Vii C31 A7 C30 N10 C27 V9 C34 V12 C3

A8 C26 A5 C23 N7 C21 V8 C29 N9 C25 A6 C20 A4 C17 C15 V5
C36 N8 C22 A3 C12 A2 C10 N3 C8 V4 C16 N5 ClI Al C4 NI
C2 Vl C9 N4 W3 X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3
C13 Y2 C14 V6 W2 X2 C19 V7 C18 Y1 W1 Xl C28 VI0 WO X0
C24 YO))

(CONN C35)
(VAL 1)
)

(DEFINE-INSTANCE L4
(:print-name "L4"
:doc-string ""
:is BOARD-OUTPUT-PORT)

(SOURCE-LIST
(L4 C34 V12 C32 A8 C26 A5 C23 N7 C21 V8 C29 N9 C25

A6 C20 A4 C17 N6 C15 V5 C36 N8 C22 A3 C12 A2 C10 N3 CS
V4 C16 N5 Cll Al C4 Ni C2 Vl C9 N4 W3 X3 C5 N2 Cl Y4 C3
V2 W4 X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2 X2 C19 V7 C18 Yi
Wl Xl C28 V10 WO XO C24 YO))

(CONN C34)
(VAL 0)
)

(DEFINE-INSTANCE DIAGNOSIS-FORM
(:print-name "DIAGNOSIS-FORM"
:doc-string ""
:is SCREEN-TEMPLATE)

45

(OBJECTS
(ACTUAL-OLIST :SLOT INF-ENG-DATA
ACTUAL-OUTPUT-LIST :COLOR :BLUE)

(SUSPECT-LIST :SLOT INF-ENG-DATA SUSPECT-LIST
:COLOR :RED)

(TEST-LIST :SLOT INF-ENG-DATA TEST-LIST)
(JUST-REMOVED :SLOT INF-ENG-DATA JUST-REMOVED)
(FAULT :SLOT INF-ENG-DATA FAULT :COLOR :RED)
(FAULTY-LIST :SLOT INF-ENG-DATA FAULTY-LIST :COLOR

:RED)
(BEST-TEST :SLOT INF-ENG-DATA BEST-TEST :COLOR

:GREEN)))
(CONTENTS

(("Actual Outputs: " (:NO-SELECT ACTUAL-OLIST))
("Suspect List: " (:NO-SELECT SUSPECT-LIST))
("Test List: " (:NO-SELECT TEST-LIST))
("Just Removed: " (:NO-SELECT JUST-REMOVED))
("Fault: " (:NO-SELECT FAULT))
("Faulty List: " (:NO-SELECT FAULTY-LIST))
("Best Test: " (:NO-SELECT BEST-TEST))))

(TITLE "* Inference Engine *")
(TEXT-COLOR : LIGHT-GRAY)
(BORDER-COLOR : LIGHT-GRAY)
(BORDER :SINGLE)
(ORIENTATION : ROW)
(LAYOUT :LINEAR)
(SPACES-BETWEEN-COLUMNS 0)
(SPACES-BETWEEN-ROWS 0))

(DEFINE-INSTANCE WORK-SCREEN
(:print-name "WORK-SCREEN"
:doc-string "Main screen for circuit acquisition and

troubleshooting"
:is SCREEN-LAYOUT)

(MENU-BAR-ITEMS
((" System

((:SLOT FAULT-DIAGNOSIS-SYSTEM NEW-SCREEN
"End Diagnosis Session" WELCOME-SCREEN)))

(" Circuit "
(:MENU ACQUISITION-MENU
"Enter Circuit Module and Connect")

(:SLOT DIAGNOSIS-SESSION STATUS
"Examine/Modify Circuit Module" :VIEW)

(:SLOT DIAGNOSIS-SESSION STATUS
"Clear all Module Instances" :CLEAR)

(:SLOT DIAGNOSIS-SESSION STATUS
"Clear Single Module Instance"

CLEAR-S INGLE)
(:MENU TEST-MENU
"Test Current Circuit for Correctness")))

(" Diagnosis

46

((:SLOT DIAGNOSIS-SESSION STATUS
"Create an Input Set" :CREATE-INPUTS)

(:SLOT DIAGNOSIS-SESSION STATUS
"Apply Next litput :APhuY-INPUTS)

(:SLOT DIAGNOSIS-SESSION STATUS "Test Outputs"
:CHECK-OUTPUT)

(:SLOT DIAGNOSIS-SESSION STATUS "Best Test"
:BEST-TEST)

(:SLOT DIAGNOSIS-SESSION STATUS "Make Test"
HMAKE-TEST)

(:SLOT DIAGNOSIS-SESSION STATUS
"Diagnose Next Fault" :DIAGNOSE-NEXm)

(:SLOT DIAGNOSIS-SESSION STATUS "Forget All"
:FORGET-ALL))))'

(MENU-BAR-BORDER-COLOR :LIGHT-GRAY)
(MENU-BAR-TEXT-COLOR :LIGHT-GRAY)
(SCREEN-TEMPLATES

((CIRCUIT-FORM :LEFT 0 :TOP 11 :WIDTH 80 :HEIGHT 5)
(DIAGNOSIS-FORM :LEFT 0 :TOP 16 :WIDTH 80 :HEIGHT
9))

(PARENT-SCREEN-CONTROL FAULT-DIAGNOSIS-SYSTEM)

(DEFINE-INSTANCE V12
(:print-name "IV12"1
:doc-string Il
is INVERTER)

(SOURCE-LIST
(V12 C32 A8 C26 AS C23 N7 C21 V8 C29 N9 C25 A6 C20

A4 C17 N6 C15 VS C36 N8 C22 A3 C12 A2 C10 N3 C8 V4 C16
N5 Cll Al C4 Nl C2 Vi C9 N4 W3 X3 C5 N2 Cl Y4 C3 V2 W4
X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2 X2 C19 V7 Ci8 Yl W1 Xl
C28 V10 WO X0 C24 YO))

(I-CONN C32)
(I-VAL 1)
(O-CONN C34)
(0-VAL 0)

(DEFINE-INSTANCE V11
(:print-name "Vil"'
:doc-string Il
:is INVERTER)

(SOURCE-LIST
(V11 C31 A7 C25 A6 C36 N8 C19 V7 C30 N10 WO XO C26

AS C22 A3 C16 N5 C14 V6 C23 N7 C18 Y1 C20 A4 C17 N6 C12
A2 C10 N3 C8 V4 C15 VS C13 Y2 W2 X2 Cil Al C4 N1 C2 Vi
C9 N4 W3 X3 CS N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C21 V8
Wi Xi C27 V9 C24 YO))

(I-CONN C31)
(I-VAL 1)
(O-CONN C33)

47

(O-VAL 0))

(DEFINE-INSTANCE MAKE-TEST-MENU
(:print-name "MAKE-TEST-MENU"
:doc-string ""
:is SET-SLOT-VALUES)

(INSTRUCTIONS ("Test Node: " C15))
(BORDER-COLOR : BLUE)
(TOP 2)
(LEFT 0)
(CENTER :NO-CENTERING)
(REVERT-BUTTON :NO)
(DEFAULT-BUTTON :NO)
(CONTENTS

((INF-ENG-DATA TEST-STATE
"Actual Value at Test Point: "))))

(DEFINE-INSTANCE FORGET-CONFIRM-MENU
(:print-name "FORGZT-CONFIRM-MENU"
:doc-string ""
:is POPUP-CONFIRM)

(BORDER-COLOR :RED)
(CENTER :X-AND-Y)
(ANSWER :YES)
(DEFAULT-ANSWER :NO)
(CONTENTS

(:RETURN " Forget all diagnosis " :RETURN
" done on this circuit? ")))

(DEFINE-INSTANCE CHECK-OUTPUT-MENU
(:print-name "CHECK-OUTPUT-MENU"
:doc-string ""
:is SET-SLOT-VALUES)

(INSTRUCTIONS
("Output Port: " L4 :RETURN "With Inputs:

(Y4 0) (Y3 0) (Y2 1) (Yl 0) (YO 0)
(X4 0) (X3 0) (X2 1) (Xl 0) (XO 0))))

(BORDER-COLOR :BLUE)
(TOP 2)
(LEFT 0)
(CENTER :NO-CENTERING)
(REVERT-BUTTON :NO)
(DEFAULT-BUTTON :NO)
(CONTENTS

((INF-ENG-DATA OUTPUT-STATE
"Actual Value at Output Port: ")))

48

(DEFINE-INSTANCE DISPLAY-MODULE-MENU
(:print-name "DISPLAY-MODULE-MENU"
:doc-strin-; I'l

:is SET-SLOT-VALUES)
(INSTRUCTIONS ("Circuit Module: " XO))
(BORDER-COLOR :BLUE)
(TOP 2)
(LEFT 0)
(CENTER :NO-CENTERING)
(REVERT-BUTTON :NO)
(DEFAULT-BUTTON :NO)
(CONTENTS

((XO VAL "Value at Port: ")
(XO CONN "Connected to: "))))

(DEFINE-INSTANCE DIAGNOSIS-SESSION
(:print-name "DIAGNOSIS-SESSION"
:doc-string ""
:is USER-INTERFACE)

(STATUS :NO)
(INSTRUCTIONS ("Circuit Module: " X0)))

(DEFINE-INSTANCE ACQUISITION-MENU
(:print-name "ACQUISITION-MEIUJ"
:doc-string ""
:is POPUP-CHOOSE)

(TITLE "Circuit Module Type")
(BORDER-COLOR :BLUE)
(CENTER :X-AND-Y)
(CONTENTS

((" Board Port " (QUOTE BOARD-PORT))
(" Connector " (QUOTE CONNECTOR))
(" 1-1 Junction " (QUOTE I-IJUNCTION))
(" 2-1 Junction " (QUOTE 2-1JUNCTION))
(" 3-1 Junction " (QUOTE 3-1JUNCTION))))

(DEFINE-INSTANCE FAULT-DIAGNOSIS-SYSTEM
(:print-name "FAULT-DIAGNOSIS-SYSTEM"
:doc-string "Fault Diagnosis System is a system to

troubleshoot circuits"
:is SCREEN-CONTROL)

(SCREEN-LAYOUTS (WELCOME-SCREEN WORK-SCREEN))
(TEMPLATE-AREA-HEIGHT 23)
(NEW-SCREEN :NO)
(COUNT 0)
(STATUS :INITIAL-STATUS)
(CLOSE-REQUEST :YES)
)

49

(DEFINE-INSTANCE WELCOME-SCREEN
(:print-name "WELCOME-SCREEN"
:!oc-string "Initial screen for fault diagnosis system"
:is SCREEN-LAYOUT)

(MENU- BAR- ITEMS
(" Start/Quit "

(:SLOT FAULT-DIAGNOSIS-SYSTEM NEW-SCREEN
"Begin Diagnosis Session" WORK-SCREEN)

(:SLOT FAULT-DIAGNOSIS-SYSTEM CLOSE-REQUEST
"Exit MULTFAULT" :YES)))))

(MENU-BAR-BORDER-COLOR : LIGHT-GRAY)
(MENU-BAR-TEXT-COLOR : LIGHT-GRAY)
(SCREEN-TEMPLATES

((WELCOME-FORM :LEFT 18 :TOP 5 :WIDTH 40
:HEIGHT 10)))

(PARENT-SCREEN-CONTROL FAULT-DIAGNOSIS-SYSTEM)
)

(DEFINE-INSTANCE WELCOME-FORM
(:print-name "WELCOME-FORM"
:doc-string "Form to display on the inital screen"
:is SCREFN-TEMPLATE)

(CONTENTS
((" MULTFAULT") (""-,)

The circuit troubleshooting")
expert system") (,,",)

Midshipman First Class ")
Bryan P. Graham") (",,,)))

(TEXT-COLOR :LIGHT-GRAY)
(BORDER-COLOR : LIGHT-GRAY)
(BORDER :DOUBLE)
(ORIENTATION :ROW)
(LAYOUT :LINEAR)
(SPACES-BETWEEN-COLUMNS 0)
(SPACES-BETWEEN-ROWS 0)

(DEFINE-INSTANCE MODULE-NAME-MENU
(:print-name "MODULE-NAME-MENU",
:doc-string -,,
:is POPUP-ASK-USER)

(INSTRUCTIONS "Circuit Module Name")
(BORDER-COLOR : BLUE)
(CENTER :X-AND-Y)
(ANSWER V12)
(LAST-ANSWER :INITIAL-STATUS)
(ANSWER-WIDTH 10)
(CONTENTS

("The Name of the " MOD-TYPE , component is:"))

50

(DEFINE-INSTANCE 2-1JUNCTION-MENU
(:print-name "2-1JUNCTION-MENU"
:doc-string ""
:is POPUP-CHOOSE)

(INSTRUCTIONS "Which Type of Junction?")
(BORDER-COLOR :BLUE)
(CENTER :X-AND-Y)
(ANSWER (QUOTE NORGATE))
(CONTENTS

(("AND Gate" (QUOTE ANDGATE))
("NAND Gate" (QUOTE NANDGATE))
("OR Gate" (QUOTE ORGATE))
("NOR Gate" (QUOTE NORGATE))
("XOR Gate" (QUOTE XORGATE))))

(FORCE-CHOICE : YES))

(DEFINE-INSTANCE MODULE-CONN-MENU
(:print-name "MODULE-CONN-MENU"
:doc-string ""
:is POPUP-ASK-USER)

(INSTRUCTIONS "Output Port:")
(BORDER-COLOR : BLUE)
(CENTER :X-AND-Y)
(ANSWER C34)
(LAST-ANSWER : INITIAL-STATUS)
(ANSWER-WIDTH 10)
(CONTENTS (MOD-TYPE " " MOD-NAME " is connected to:")))

(DEFINE-INSTANCE CONNECTOR-MENU
(:print-name "CONNECTOR-MENU"
•doc-string
:is POPUP-CHOOSE)

(INSTRUCTIONS "Which Type of Connector?")
(BORDER-COLOR : BLUE)
(CENTER :X-AND-Y)
(ANSWER (QUOTE 3-PORT-CONNECTOR))
(CONTENTS

(("2 Port Connector" (QUOTE 2-PORT-CONNECTOR))
("3 Port Connector" (QUOTE 3-PORT-CONNECTOR))))

(FORCE-CHOICE :YES))

(DEFINE-INSTANCE BOARD-PORT-MENU
(:print-name "BOARD-PORT-MENU"
:doc-string " "

:is POPUP-CHOOSE)
(INSTRUCTIONS "Which Type of Board Port?")
(BORDER-COLOR : BLUE)
(CENTER :X-AND-Y)
(ANSWER (QUOTE BOARD-INPUT-PORT))

51

(CONTENTS
("Input Port" (QUOTE BOARD-INPUT-PORT))
("Output Port" (QUOTE BOARD-OUTPUT-PORT))))

(FORCE-CHOICZ :YES)
)

(DEFINE-INSTANCE NO-MODULE-MENU
(:print-name "NO-MODULE-MENU"
:doc-string ""
:is POPUP-CHOOSE)

(INSTRUCTIONS "Ooops! !")
(BORDER-COLOR :BLUE)
(TOP 2)
(LEFT 60)
(CENTER :NO-CENTERING)
(ANSWER :1J\)
(TARGET-INSTANCE DIAGNOSIS-SESSION)
(TARGET-SLOT STATUS)
(CONTENTS

((:TEXT "There are no") (:TEXT "circuit modules")
("OK" :NO)))

(DEFINE-INSTANCE CLEAR-MODULE-CONFIRM-MENU
(:print-name "CLEAR-MODULE-CONFIRM-MENU"
:doc-string ""
:is POPUP-CONFIRM)

(BORDER-COLOR :RED)
(CENTER :X-AND-Y)
(ANSWER :NO)
(DEFAULT-ANSWER :NO)
(CONTENTS

(:RETURN :RETURN " DELETE all module instances??

"))

(DEFINE-INSTANCE CIRCUIT-FORM
(:print-name "CIRCUIT-FORM"
:doc-string ""
:is SCREEN-TEMPLATE)

(OBJECTS
(INPUTNUM :SLOT INF-ENG-DATA INPUT-NUM :WIDTH 5

:COLOR :WHITE)
(ISET :SLOT INF-ENG-DATA ISET-NUM :WIDTH 5 :COLOR

:WHITE)
(INPUTS :SLOT INF-ENG-DATA INPUT-LIST :WIDTH 25

:COLOR :WHITE)
(OUTPUTS :SLOT INF-ENG-DATA OUTPUT-LIST :WIDTH 25

:COLOR :WHITE)))
(CONTENTS

(("Input Set #" (:NO-SELECT INPUTNUM) " of
(:NO-SELECT ISET))

52

("Inputs:" (:NO-SELECT INPUTS))
("Outputs:" (:NO-SELECT OUTPUTS))))

(TITLE 11 Circuit *11)
(TEXT-COLOR :LIGHT-GRAY)
(BORDER-COLOR : LIGHT-GRAY)
(BORDER :SINGLE)
(ORIENTATION : ROW)
(LAYOUT :LINEAR)
(SPACES-BETWEEN-COLUMNS 0)
(SPACES-BETWEEN-ROWS 0)

(DEFINE-INSTANCE MODULE-LIST-MENU
(:print-name "MODULE-LIST-MENU"l
:doc-string Il
:is POPUP-CHOOSE)

(INSTRUCTIONS "Make Test at:")
(BORDER-COLOR :BLUE)
(TOP 2)
(LEFT 60)
(CENTER :NO-CENTERING)
(ANSWER C15)
(CONTENTS

("CC33"1 C33) ("1C31"1 C31) ("1C311" C31) ("OC25"1 C25)
("C309" C30) ('IC30"1 C30) ("W0O" WO) ("1C2711 C27)
("-C26"1 C26) ("1C27-1 C27) ("-C24"1 C24) ("IC34"1 C34)
("C32"1 C32) ("1C3211 C32) ("IC26"1 C26) ("IC2911 C29)
("C26"1 C26) (-"C22"1 C22) ("-C23"1 C23) ("IC23"1 C23)
C"C18"1 C18) (-"C201" C20) ("IC21"1 C21) ("IC21"1 C21)
("W11" Wi) ("IC29"1 C29) ("IC24"1 C24) ("1C25"1 C25)
("C28"1 C28) ("IC25"1 C25) ("IC20"1 C20) ("1C36"1 C3,6)
C"C20"1 C20) ("Cli"l Cli) ("1C17"1 C17) ("C17" C17)
("W211 W2) ("C15"1 C15) ("C12"1 C12) ("1C15"1 C15)
("C13"1 C13) ("IC36"1 C36) ("Wi"1 Wi) ("C19"1 C19)
("C22"1 C22) ("1C22"1 C22) ("C12-1 C12) ("C161" C16)
("C16"1 C16) ("C11i1 C11) ("IC13"1 C13) ("1C14"1 C14)
("C14"1 C14) ("IW2"- W2) ("C19"1 C19) ("IC18"1 C18)
C"C28"1 C28) (tWo"l WO)))

(DEFINE-INSTANCE l-1JUNCTION-MENU
(:print-name "Il-1JUNCTION-MENU"l
:doc-string Il
:is POPUP-CHOOSE)

(INSTRUCTIONS "Which Type of Junction?")
(BORDER-COLOR : BLUE)
(CENTER :X-AND-Y)
(ANSWER (QUOTE INVERTER))
(CONTENTS (("Inverter" (QUOTE INVERTER)))
(FORCE-CHOICE :YES)

53

(DEFINE-INSTANCE 3-1JUNCTION-MENU
(:print-name "3-1JUNCTION-MENU"
:doc-string I'"
:is POPUP-CHOOSE)

(INSTRUCTIONS "Which Type of Junction?")
(BORDER-COLOR :BLUE) :; Slot MENU could not be saved of

type NULL
(CENTER :X-AND-Y)
(ANSWER NIL)
(CONTENTS (("NAND Gate-31") (QUOTE NANDGATE-31)))
(FORCE-CHOICE :YES))

(DEFINE-INSTANCE INF-ENG-DATA
(:print-name "INF-ENG-DATA"
:doc-string ""
:is INFERENCE-ENGINE)

(INPUT-NUM 6)
(INPUT-LIST

(Y4 0) (Y3 0) (Y2 1) (Y1 0) (YO 0) (X4 0)
(X3 0) (X2 1) (X1 0) (XO 0)))

(OUTPUT-LIST ((L2 0) (L3 1) (L4 0)))
(INPUT-PORT-LIST (Y4 Y3 Y2 Y1 YO X4 X3 X2 Xl XO))
(OUTPUT-PORT-LIST (L2 L3 L4))
(JUNCTION-LIST

(V12 VII V10 V9 V8 V7 V6 V5 V4 V3 V2 V1 R1 N1 N2 N3
N4 N5 N6 N7 N8 N9 N10 Al A2 A3 A4 A5 A6 A7 A8))

(CONNECTOR-LIST
(W4 W3 W2 Wi WO C34 C33 C26 C25 C24 C22 C20 C18 C13

C12 C12 CII C6 C5 C4 Cl C35 C36 C32 C31 C30 C29 C28
C27 C23 C21 C19 C17 C16 C15 C14 C10 C9 C8 C7 C3 C2))

(ISET-NUM 1024)
(INPUT-SET-LIST

((0 0 0 0 0 0 0 0 0 0) (0 0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 0 1 0) (0 0 0 0 0 0 0 0 1 1)
(0 0 0 0 0 0 0 1 0 0) (0 0 0 0 0 0 0 1 0 1)
(0 0 0 0 0 0 0 1 1 0) (0 0 0 0 0 0 0 1 1 1)
(0 0 0 0 0 0 1 0 0 0) (0 0 0 0 0 0 1 0 0 1)
(0 0 0 0 0 0 1 0 1 0) (0 0 0 0 0 0 1 0 31 1)
(o 0 0 0 0 0 1 1 0 0) (o 0 0 0 0 0 1 1 0 1)~(0000001110) (0000001111)
(0 0 0 0 0 0 1 1 0 0) (0 0 0 0 0 0 1 1 0 1)
(0 0 0 0 0 1 0 0 0 0) (0 0 0 0 0 1 0 1 0 1)
(0 0 0 0 0 1 0 0 1 0) (0 0 0 0 0 1 0 0 1 1)
(0 0 0 0 0 1 01 0 0) (0 0 0 0 0 1 01 0 1)
(0 0 0 0 0 1 0 1 1 0) (0 0 0 0 0 1 0 1 1 1)
(0 0 0 0 0 1 1 1 0 0) (0 0 0 0 0 1 1 1 0 1)
(0 00 00 11 0 10)(0 00 00 11 01 1)
(0 00 00 11 1 00)(0 00 00 11 1 01)

(0 0 0 0 0 1 1 1 1 0) (0 0 0 0 0 1 1 1 1 1)
(0 00 0 1 0 00 0 0) (0 0 0 0 1 0 0 0 0 1)
(0 0 0 0 1 0 0 0 1 0) (0 0 0 0 1 0 0 0 1 1)
(0 0 0 0 1 0 0 1 0 0) (0 0 0 0 1 0 0 1 0 1)

54

(0 0 0 0 1 0 0 1 1 0) (0 0 0 0 1 0 0 1 1 1)
(0 0 0 0 1 0 1 0 0 0) (0 0 0 0 1 0 1 0 0 1)
(0 0 0 0 1 0 1 0 1 0) (0 0 0 0 1 0 1 0 1 1)
(0 0 0 0 1 0 1 1 0 0) (0 0 0 0 1 0 1 1 0 1)
(0 0 0 0 1 0 1 1 1 0) (0 0 0 0 1 0 1 1 1 1)
(0 0 0 0 1 1 0 0 0 0) (0 0 0 0 1 1 0 0 0 1)
(0 0 0 0 1 1 0 0 1 0) (0 0 0 0 1 1 0 0 1 1)
(o 0 0 0 1 1 0 1 0 0) (o 0 0 0 1 1 0 1 0 1)
(0 0 0 0 1 1 0 1 1 0) (0 0 0 0 1 1 0 1 1 1)
(0 0 0 0 1 1 1 0 0 0) (0 0 0 0 1 1 1 0 0 1)
(0 0 0 0 1 1 1 0 1 0) (0 0 0 0 1 1 1 0 1 1)
(o 0 0 0 1 1 1 1 0 0) (o 0 0 0 1 1 1 1 0 1)
(0 0 0 0 1 1 1 1 1 0) (0 0 0 0 1 1 1 1 1 1)
(0 0 0 1 0 0 0 0 0 0) (0 0 0 1 0 0 0 0 0 1)
(0 0 0 1 0 0 0 0 1 0) (0 0 0 1 0 0 0 0 1 1)
(0 0 0 1 0 0 0 1 0 0) (0 0 0 1 0 0 0 1 0 1)
(0 0 0 1 0 0 0 1 1 0) (0 0 0 1 0 0 0 1 1 1)
(0 0 0 1 0 0 1 0 0 0) (0 0 0 1 0 0 1 0 0 1)
(o 0 0 1 0 0 1 0 1 0) (o 0 0 1 0 0 1 0 1 1)
(0 0 0 1 0 0 1 1 0 0) (0 0 0 1 0 0 1 1 0 1)
(o 0 0 1 0 0 1 1 1 0) (o 0 0 1 0 0 1 1 1 1)
(0 0 0 1 0 1 0 0 0 0) (0 0 0 1 0 1 0 0 0 1)
(0 0 0 1 0 1 0 0 1 0) (0 0 0 1 0 1 0 0 1 1)
(0 00 10 10 10 0) (0 0 0 1 0 10 1 0 1)
(0 0 0 1 0 1 0 1 1 0) (0 0 0 1 0 1 0 1 1 1)
(o 0 0 1 0 1 1 0 0 0) (o 0 0 1 0 1 1 0 0 1)
(0 0 0 1 0 1 1 0 1 0) (0 0 0 1 0 1 1 0 1 1)
(0 0 0 1 0 1 1 1 0 0) (0 0 0 1 0 1 1 1 0 1)
(0 0 0 1 0 1 1 1 1 0) (0 0 0 1 0 1 1 1 1 1)
(o 0 0 1 1 0 0 0 0 0) (o 0 0 1 1 0 0 0 0 1)
(0 0 0 1 1 0 0 0 1 0) (0 0 0 1 1 0 0 0 1 1)
(60 0 1 1 00 1 0 0)))

(OUTPUT-STATE 1)
(ACTUAL-OUTPUT-LIST ((L2 BAD) (L3 OK) (L4 BAD)))
(SUSPECT-LIST

(Vli A7 N10 V9 V12 A8 A5 N7 V8 N9 A6 A4 N6 V5 N8 A3
N5 V6 V7 V10))

(TEST-LIST
(C33 C31 C31 C25 C30 C30 WO C27 C26 C27 C24 C34 C32

C32 C26 C29 C26 C22 C23 C23 C18 C20 C21 C21 Wi C29 C24
C25 C28 C25 C20 C36 C20 Cli C17 C17 W2 C15 C12 C15 C13
C36 Wi C19 C22 C22 C12 C16 C16 Cll C13 C14 C14 W2 C19
CIS C28 WO))

(TEST-STATE 1)
(TESTMADE-LIST ((Cll OK) (C12 OK)))
(REMOVED-LIST NIL)
(JUST-REMOVED (V2 N2 Vi Ni V4 N3 A2))
(FAULT V5)
(FAULTY-LIST (V5)))

(DEFINE-INSTANCE V10

55

(:print-name "Viol'
:doc-string I'l
:is INVERTER)

(SOURCE-LIST (V1O Wo XO))
(I-CONN WO)
(1-VAL 0)
(O-CONN C28)
(0-VAL 1)

(DEFINE-INSTANCE V9
(:print-name "IV911
:doc-string Il
:is INVERTER)

(SOURCE-LIST (V9 C24 YO))
(I-CONN C24)
(I-VAL 0)
(O-CONN C27)
(0-VAL 1)

(DEFINE-INSTANCE Va
(:print-name "IV811
.doc-string Il
:is INVERTER)

(SOURCE-LIST (V8 W1 Xl))
(I-CONN W1)
(I-VAL 0)
(O-CONN C21)
(0-VAL 1)

(DEFINE-INSTANCE V7
(:print-name "W"'
.doc-string Il
:is INVERTER)

(SOURCE-LIST (V7 C18 Y1))
(I-CONN C18)
(I-VAL 0)
(O-CONN C19)
(0-VAL 1)

(DEFINE-INSTANCE V6
(:print-name "IV611
.doc-string Il
:is INVERTER)

(SOURCE-LIST (V6 W2 X2))
(I-CONN W2)
(I-VAL 1)
(O-CONN C14)
(0-VAL 0)

56

(DEFINE-INSTANCE V5
(:print-name "V5"
:doc-string ""
:is INVERTER)

(SOURCE-LIST (V5 C13 Y2))
(I-CONN C13)
(I-VAL 1)
(O-CONN C15)
(O-VAL 0))

(DEFINE-INSTANCE V4
(:print-name "V4"
:doc-string ""
:is INVERTER)

(SOURCE-LIST (V4 W3 X3))
(I-CONN W3)
(I-VAL 0)
(O-CONN C8)
(O-VAL 1))

(DEFINE-INSTANCE V3
(:print-name "V3"
:doc-string ""
:is INVERTER)

(SOURCE-LIST (V3 C6 Y3))
(I-CONN C6)
(I-VAL 0)
(O-CONN C7)
(O-VAL 1)

(DEFINE-INSTANCE V2
(:print-name "V2"
:doc-string ""
:is INVERTER)

(SOURCE-LIST (V2 W4 X4))
(I-CONN W4)
(I-VAL 0)
(O-CONN C3)
(O-VAL 1)
)

(DEFINE-INSTANCE V1
(:print-name "Vi"
:doc-string ""
:is INVERTER)

(SOURCE-LIST (VI C1 Y4))
(I-CONN Ci)

57

(I1-VAL 0)
(O-CONN C2)
(0-VAL 1)

(DEFINE-INSTANCE C2
(:print-name "C2"
.doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C2 V3. Ci Y4))
(VAL 1)
(COHN-i Vi)
(CONN-2 Ni)

(DEFINE-INSTANCE C3
(:print-name "C31'
.doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C3 V2 W4 X4))
(VAL 1)
(COHN-i V2)
(CONN-2 N2)

(DEFINE-INSTANCE C7
(:print-iame 'C711
.doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C7 V3 C6 Y3))
(VAL 1)
(CONN-i V3)
(CONN-2 N4)

(DEFINE-INSTANCE C8
(:print-name "C811
.doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C8 V4 W3 X3))
(VAL 1)
(COHN-i V4)
(CONN-2 N3)

(DEFINE-INSTANCE C9
(:print-name "IC911
.doc-string Ill
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3))

(VAL 1)

58

(CONN-l N4)
(CONN-2 Al)

(DEFINE-INSTANCE CIO
(:pririt-rxame "CIO'
:doc-striig Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST

(A1)(ClO N3 C8 V4 W3 X3 C6 Y3 C4 Ni W4 X4 C2 Vi Cl Y4))

(CONN-l N3)
(CONN-2 A2)

(DEFINE-INSTANCE C14
(:pririt-name "C14"
:doc-striig Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C14 V6 W2 X2))
(VAL 0)
(CONN-. V6)
(CONN-2 N5)

(DEFINE-INSTANCE C15
(:print-name "C1511
:doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C15 V5 C13 Y2))
(VAL 0)
(CONN-1 V5)
(CONN-2 N6)

(DEFINE-INSTANCE C16
(:print-name 'C16"
:doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C16 N5 Cli Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4

C3 V2 W4 X4 C7 V3 C6 Y3 C13 Y2 Ci4 V6 W2 X2))
(VAL 1)
(CONN-i N5)
(CONN-2 A3)

(DEFINE-INSTANCE C17
(:pririt-name "C1711
:doc-striig

59

.Is 2-PORT-CONNECTOR)
(SOURCE-LIST

(C17 N6 C12 A2 C10 N3 C8 V4 W3 X3 C6 Y3 C4 NI C2 Vi
C5 N2 Cl Y4 C3 V2 W4 X4 C15 V5 C13 Y2 W2 X2))

(VAL 1)
(CONN-1 N6)
(CONN-2 A4)

(DEFINE-INSTANCE C19
(:print-name "C1911
:doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C19 V7 C18 Y1))
(VAL 1)
(CONN-. V7)
(CONN-2 NB)

(DEFINE-INSTANCE C2 1
(:print-name "C2 1"
:doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C21 VR Wi Xl))
(VAL 1)
(CONN-i V8)
(CONN-2 N7)

(DEFINE-INSTANCE C23
(:print-name "C2311
:doo-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C23 N7 C18 Yi C20 A4 C17 N6 C12 A2 C10 N3 C8 V4 C15

V5 C13 Y2 W2 X2 Cii Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci
Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C21 V8 Wi Xl))

(VAL 1)
(CONN-1 N7)
(CONN-2 A5)

(DEFINE-INSTANCE C27
(:pririt-name "C2711
:doc-striig Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C27 V9 C24 YO))
(VAL 1)
(CONN-i V9)
(CONN-2 N10)

60

(DEFINE-INSTANCE C28
(:print-name "C28"1
:doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST (C28 V10 WO XO))
(VAL 1)
(CONN-i V10)
(CONN-2 N9)

(DEFINE-INSTANCE C2 9
(:print-name "C2 9"
:doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C29 N9 C25 A6 C20 A4 C17 N6 C15 V5 C36 N8 C22 A3

C12 A2 CIO N3 C8 V4 C16 N5 Cli Al C4 Ni C2 Vi C9 N4 W3
X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2
X2 Ci9 V7 Ci8 Yi Wi Xi C28 Vi0 WO XO C24 YO))

(VAL 1)
(CONN-i N9)
(CONN-2 A8)

(DEFINE-INSTANCE C30
(:print-name "C3 0"
.doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C30 N10 WO XO C26 A5 C22 A3 C16 N5 Ci4 V6 C23 N7

C18 Yi C20 A4 C17 N6 C12 A2 C10 N3 C8 V4 Ci5 V5 C13 Y2
W2 X2 Cii Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2
W4 X4 C7 V3 C6Y3C21 V8 WXC27 V9C24 YO))

(VAL i)
(CONN-i N10)
(CONN-2 A7)

(DEFINE-INSTANCE C31
(:print-name "C3i"
.doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C3i A7 C25 A6 C36 NB Ci9 V7 C30 N10 WO XO C26 A5

C22 A3 Ci6 N5 C14 V6 C23 N7 C18 Yi C20 A4 Ci7 N6 C12 A2
C10 N3 C8 V4 Ci5 V5 C13 Y2 W2 X2 Cii Al C4 Ni C2 Vi C9
N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C2i V8 WI
Xi C27 V9 C24 YO))

(VAL i)
(CONN-i A7)

61

(CONN-2 V11)

(DEFINE-INSTANCE C3 2
(:print-iame 'C32"1
:doc-string Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C32 A8 C26 A5 C23 N7 C21 V8 C29 N9 C25 A6 C20 A4

C17 N6 C15 V5 C36 N8 C22 A3 C12 A2 C10 N3 C8 V4 C16 N5
Cli Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4
C7 V3 C6 Y3 C13 Y2 C14 V6 W2 X2 C19 V7 C18 Yl Wi Xi C28
C10 WO XO C24 YO))

(VAL 1)
(CONN-i A8)
(CONN-2 V12)

(DEFINE-INSTANCE C3 6
(:pririt-riame "C3 6"
:doc-strina 'l
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C36 NB C22 A3 C12 A2 C10 N3 C8 V4 C16 N5 Cli Al C4

Ni C2 Vi C9 N4 W3 X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6
Y3 C13 Y2 C14 V6 W2 X2 C19 V7 C18 Yl Wi Xi))

(VAL 1)
(CONN-i N8)
(CONN-2 A6)

(DEFINE-INSTANCE C35
(:print-name "C3 5"
:doc-striig Il
is 2-PORT-CONNECTOR)

(SOURCE-LIST
(C35 Ri C33 Vii C31 A7 C30 N10 C27 V9 C34 V12 C32 A8

C26 A5 C23 N7 C21 V8 C29 N9 C25 A6 C20 A4 C17 N6 C15 V5
C36 NB C22 A3 C12 A2 C10 N3 C8 V4 C16 N5 Cii Al C4 Ni
C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3
C13 Y2 C14 V6 W2 X2 C19 V7 C18 Yi Wi Xi C28 V10 WO XO
C24 YO))

(VAL 1)
(CONN-i Ri)
(CONN-2 LW)

(DEFINE-INSTANCE Cl
(:print-name "Ci"
:doc-striig Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (Ci Y4))

62

(VAL 0)
(CONN-i Y4)
(CONN-2 Vi)
(CONN-3 N2)

(DEFINE-INSTANCE C4
(:print-name "C411
.doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (C4 Ni W4 X4 C2 VI Ci Y4))
(VAL 1)
(CONN-i Ni)

(CONN-2 N3)1
(CONN-3 Ai)

(DEFINE-INSTANCE C5
(:print-name "C51"
.doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (C5 N2 Cl Y4 C3 V2 W4 X4))
(VAL i)
(CONN-i N2)
(CONN-2 A2)
(CONN-3 N4)

(DEFINE-INSTANCE C6
(:print-name "C611
.doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (C6 Y3))
(VAL 0)
(CONN-i Y3)
(CONN-2 V3)
(CONN-3 N3)

(DEFINE-INSTANCE Cil
(:print-name "Cli"
.doc-string Il
i.s 3-PORT-CONNECTOR)

(SOURCE-LIST
(Cii Ai C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4

X4 C7 V3 C6 Y3))
(VAL 1)
(TEST-REMOVED NIL)
(TEST-DEPENDENT ((Cii OK) (Ci2 OK)))
(CONN-1 Al)
(CONN-2 A4)
(CONN-3 N5)

63

(DEFINE-INSTANCE C12
(:print-name "C12"1
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST
(C12 A2 C10 N3 C8 V4 W3 X3 C6 Y13 C4 Ni C2 Vi C5 N2

Cl Y14 C3 V2 W4 X4))
(VAL 1)
(TEST-REMOVED (V2 N2 Vi Ni V4 N3 A2))
(TEST-DEPENDENT ((Cii OK) (C12 OK)))
(CONN-1 A2)
(CONN-2 A3)
(CONN-3 N6)

(DEFINE-INSTANCE Ci3
(:print-name "C1311
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (C13 Y12))
(VAL i)
(CONN-i Y12)
(CONN-2 V5)
(CONN-3 N5)

(DEFINE-INSTANCE Ci8
(:print-riame "Ci811
:doc-strinq 'l
is 3-PORT-CONNECTOR)

(SOURCE-LIST (C18 Yi))
(VAL 0)
(CONN-i Yi)
(CONN-2 V7)
(CONN-3 N7)

(DEFINE-INSTANCE C20
(:print-name "C2011
:doc-striig Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST
(C20 A4 Ci7 N6 Ci2 A2 Ci0 N3 C8 V4 C15 V5 Ci3 Y2 W2

X2 Cii Ai C4 Ni C2 VI C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4
X4 C7 V3 C6 Y13))

(VAL 1)
(CONN-i A4)
(CONN-2 A6)
(CONN-3 N7)

64

(DEFINE-INSTANCE C22
(:print-name "C2 2"
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST
(C22 A3 C12 A2 C10 N3 C8 V4 C16 N5 Cli Al C4 Ni C2

Vi C9 N4 W3 X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C13
Y2 C14 V6 W2 X2))

(VAL 1)
(CONN-i A3)
(CONN-2 AS)
(CONN-3 N8)

(DEFINE-INSTANCE C24
(:pr-int-riame "C2411
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (C24 YO))
(VAL 0)
(CONN-l YO)
(CONN-2 Vhs)
(CONN-3 N9)

(DEFINE-INSTANCE C25S
(:print-name "C2 5"
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST
(C25 A6 C20 A4 C17 N6 C15 VS C36 NB C22 A3 C12 A2

CIO N3 C8 V4 C16 N5 Cli Al C4 Ni C2 Vi C9 N4 W3 X3 CS
N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C13 Y2 C14 V6 WO C19
V7 C18 Yl Wi Xl))

(VAL 1)
(CONN-l A6)
(CONN-2 N9)
(CONN-3 A7)

(DEFINE-INSTANCE C26
(:print-riame "C2 6"
:doc-striig Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST
(C26 AS C22 A3 C16 N5 C14 V6 C23 N7 C18 Yl C20 A4

C17 N6 C12 A2 C10 N3 C8 V4 Ci5 VS C13 Y2 W2 X2 Cli A!
C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3
C6 Y3 C21 V8 Wi Xl))

(VAL 1)
(CONN-i AS)

65

(CONN-2 A8)
(CONN-3 N10)

(DEFINE-INSTANCE C33
(:print-name "IC3 3"
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST
(C33 Vi1 C3i A7 C25 A6 C36 N8 C19 V7 C30 Ni0 wO XO

C26 A5 C22 A3 C16 Y5 C14 V6 C23 N7 C18 Yi C20 A4 C17 N6
C12 A2 C10 N3 C8 V4 C15 V5 Ci3 Y2 W2 X2 Cli Al C4 Ni C2
VI C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C2i
VS Wi Xi C27 V9 C24 YO))

(VAL 0)
(CONN-i V11)
(CONN-2 L2)
(CONN-3 RI)

(DEFINE-INSTANCE C34
(:print-riame "IC34"1
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST
(C34 V12 C32 A8 C26 A5 C23 N7 C2i V8 C29 N9 C25 A6

C20 A4,C17 N6 C15 V5 C36 N8 C22 A3 C12 A2 C10 N3 C8 V4
C16 N5 Cli Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2
W4 X4 C7 V3 C6 Y3 Ci3 Y2 Ci4 V6 W2 X2 C19 V7 Ci8 Yi Wi
X1 C28 Vi0 WO XO C24 YO))

(VAL 0)
(CONN-l V12)
(CONN-2 L4)
(CONN-3 Ri)

(DEFINE-INSTANCE WO
(:print-nane 'IWO"
:doc-strinq 'l
is 3-PORT-CONNECTOR)

(SOURCE-LIST (WO XO))
(VAL 0)
(CONN-i XO)
(CONN-2 Ni0)
(CONN-3 Vi0)

(DE7INE-INSTANCE Wi
(:print-name "Wi11
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (Wi Xi))

66

(VAL 0)
(CONN-1 Xl)
(CONN-2 N8)
(CONN-3 V8)

(DEFINE-INSTANCE W2
(:print-name "IW2"
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (W2 X2))
(VAL 1)
(CONN-l X2)
(CONN-2 N6)
(CONN-3 V6)

(DEFINE-INSTANCE W3
(:pririt-name "IW3"
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (W3 X3))
(VAL 0)
(CONN-l X3)
(CONN-2 V4)
(CONN-3 N4)

(DEFINE-INSTANCE W4
(:pririt-riame "IW4"
:doc-string Il
is 3-PORT-CONNECTOR)

(SOURCE-LIST (W4 X4))
(VAL 0)
(CONN-l X4)
(CONN-2 Ni)
(CONN-3 V2)

(DEFINE-INSTANCE Al
(:print-name "Al"
:doc-string Il
:is ANDGATE)

(SOURCE-LIST
(Al C4 Ni C2 Vi C9 N4 W3 X3 C5 h2 Ci Y4 C3 V2 W4 X4

C7 V3 C6 Y3))
(0-VAL 1)
(Ii-CONN C9)
(12-CONN C4)
(O-CONN C11)
(12-VAL 1)
(Il-VAL 1)

67

(DEFINE-INSTANCE A2
(:print-name "IA2"1
:doc-striig Il
:is ANDGATE)

(SOURCE-LIST
(A2 C10 N3 Cs V4 W3 X3 C6 Y3 C4 Ni C2 Vi C5 N2 Ci Y4

C3 V2 W4 X4))
(0-VAL 1)
(Ii-CONN C5)
(12-CONN C10)
(O-CONN C12)
(12-VAL 1)
(Il-VAL i)

(DEFINE-INSTANCE A3
(:print-riame "A3"1
:doc-striig Il
:is ANDGATE)

(SOURCE-LIST
(A3 C12 A2 C10 N3 C8 V4 W3 X3 C6 Y3 C4 Ni C2 VI C5

N2 Ci Y4 C3 V2 W4 X4 C16 N5 Cii Al C4 Ni C2 Vi C9 N4 W3
X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C13 Y2 Ci4.V6 W2
X2))

(0-VAL 1)
(Ii-CONN Ci2)
(12-CONN Ci6)
(O-CONN C22)
(12-VAL 1)
(Il-VAL 1)

(DEFINE-INSTANCE A4
(:prirxt-name "A411
:doc-string Il
:is ANDGATE)

(SOURCE-LIST
(A4 C17 N6 C12 A2 C10 N3 C8 V4 Ci5 V5 Ci3 Y2 W2 X2

Cii Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4
C7 V3 C6 Y3))

(0-VAL i)
(Ii-CONN Cii)
(12-CONN C17)
(O-CONN C20)
(12-VAL i)
(li-VAL 1)

(DEFINE-INSTANCE A5
(:print-riame "IA51"

68

.doc-string
:is ANDGATE)

(SOURCE-LIST
(A5 C22 A3 C12 A2 C10 N3 C8 V4 C16 N5 Cli Al C4 Ni

C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3
C13 Y2 C14 V6 W2 X2 C23 N7 C18 Yl C20 A4 C17 N6 C12 A2
C1O N3 C8 V4 C15 V5 C13 Y2 W2 X2 Cii Al C4 Ni C2 Vi C9
W3 X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C21 V8 Wi
Xl))

(0-VAL 1)
(Ii-CONN C22)
(12-CONN C23)
(O-CONN C26)
(12-VAL 1)
(Il-VAL 1)

(DEFINE-INSTANCE A6
(:print-riame "A611
.doc-string
:is ANDGATE)

(SOURCE-LIST
(A6 C20 A4 C17 N6 C12 A2 C1O N3 C8 V4 C15 V5 C13 Y2

W2 X2 Cii Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2
W4 X4 C7 V3 C6 Y3 C36 N8 C22 A3 C12 A2 C10 N3 C8 V4 C16
N5 Cli Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4
X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2 X2 C19 V7 C18 Yb Wi
Xi))

(0-VAL 1)
(Ii-CONN C20)
(12-CONN C36)
(O-CONN C25)
(12-VAL 1)
(Il-VAL 1)

(DEFINE-INSTANCE A7
(:print-name "A711
.doc-string Il
:is ANDGATE)

(SOURCE-LIST
"A7 C25 A6 C20) A4 C17 N6 C15 V5 C36 N8 C22 A3 C12 A2

C10 N3 C8 V4 C16 N5 Cli Al C4 Ni C2 Vi C9 N4 W3 X3 C5
N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2 X2
C19 V7 C18 Y1 Wi Xi C30 N10 WO XO C26 A5 C22 A3 C16 N5
C14 V6 C23 N7 C18 Yb C20 A4 C17 N6 C12 A2 Cl0 N3 C8 V4
C15 V5 C13 Y2 W2 X2 Cli Al C4 Ni C2 VI C9 N4 W3 X3 C5
N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C21 V8 Wi Xi C27 V9
C24 YO))

(0-VAL 1)
(Ii-CONN C25)
(12-CONN C30)

69

(O-CONN C31)
(12-VAL 1)
(Il-VAL 1)

(DEFINE-INSTANCE AS
(:print-name "IA8"1
:doc-striig Il
:is ANDGATE)

(SOURCE-LIST
(A8 C26 A5 C22 A3 C16 N5 C14 V6 C23 N7 C18 Yl C20 A4

C17 N6 C12 A2 C10 N3 C8 V4 C15 V5 C13 Y2 W2 X2 CII Al
C4 NI C2 Vi C9 N4 W3 X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3
C6 Y3 C21 V8 Wi Xl C29 N9 C25 A6 C20 A4 C17 N6 C15 V5
C36 N8 C22 A3 C12 A2 C10 N3 C8 V4 Cl6 N5 Cil Al C4 Ni
C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3
C13 Y2 C14 V6 W2 X2 C19 V7 CIS Yl Wi Xl C28 VIO WO XO
C24 YO))

(0-VAL 1)
(Il-CONN C26)
(12-CONN C29)
(O-CONN C32)
(12-VAL 1)
(Il-VAL 1)

(DEFINE-INSTANCE Ni

:doc-string Il
:is NANDGATE)

(SOURCE-LIST (Ni W4 X4 C2 Vi Cl Y4))
(0-VAL 1)
(Il-CONN C2)
(12-CONN W4)
(O-CONN C4)
(12-VAL 0)
(Il-VAL 1)

(DEFINE-INSTANCE N2
(:print-name "IN2"1
:doc-string Il
:is NANDGATE)

(SOURCE-LIST (N2 Cl Y4 C3 V2 W4 X4))
(0-VAL 1)
(Ii-CONN Cl)
(12-CONN C3)
(O-CONN C5)
(12-VAL 1)
(li-VAL 0)

70

(DEFINE-INSTANCE N3
(:print-name "IN3"
:doc-string
:is NANDGATE-31)

(SOURCE-LIST
(N3 C8 V4 W3 X3 C6 Y3 C4 Ni W4 X4 C2 Vi Cl Y4))

(I1-CONN C4)
(12-CONN C6)
(13-CONN C8)
(Il-VAL 1)
(12-VAL 0)
(13-VAL 1)
(O-CONN Clo)
(0-VAL 1)

(DEFINE-INSTANCE N4
(:print-riame "N4"
:doc-string Il
:is NANDGATE-31)

(SOURCE-LIST
(N4 W3 X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3))

(I1-CONN W3)
(12-CONN C5)
(13-CONN C7)
(Il-VAL 0)
(12-VAL 1)
(13-VAL 1)
(O-CONN C9)
(0-VAL 1)

(DEFINE-INSTANCE N'5
(:print-name "IN5"1
:doc-striig I'll
:is NANDGATE-31)

(SOURCE-LIST
(N5 Cli Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Cl Y4 C3 V2

W4 X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2 X2))
(I1-CONN C11)
(I2-CONN C13)
(13-CONN C14)
(Il-VAL 1)
(12-VAL 1)
(13-VAL 0)
(O-CONN C16)
(0-VAL 1)

(DEFINE-INSTANCE N6
(:print-name "IN6"1
.doc-string "

71

:is NANDGATE-31)
(SOURCE-LIST

(N6 C12 A2 C1O N3 C8 V4 W3 X3 C6 Y3 C4 Ni C2 VI C5
N2 Cl Y4 C3 V2 W4 X4 C15 V5 C13 Y2 W2 X2))

(Il-COHN W2)
(12-CONN C15)
(13-CONN C12)
(Il-VAL 1)
(12-VAL 0)
(13-VAL 1)
(O-CONN C17)
(0-VAL 1)

(DEFINE-INSTANCE N7
(:print-iame "N711
.doc-string Ill

:is NANDGATE-31)
(SOURCE-LIST

(N7 C18 Yi C20 A4 C17 N6 C12 A2 C10 N3 C8 V4 C15 V5
C13 Y2 W2 X2 Cli Al C4 Ni C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4
C3 V2 W4 X4 C7 V3 C6 Y3 C21 V8 Wi Xl))

(Il-COHN C18)
(12-CONN C20)
(13-CONN C21)
(Il-VAL 0)
(12-VAL 1)
(13-VAL 1)
(0-COHN C23)
(0-VAL 1)

(DEFINE-INSTANCE N8
(:print-name "N8B"
.doc-string Il
:is NANDGATE-31)

(SOURCE-LIST
(N8 C22 A3 C12 A2 C10 N3 C8 V4 C16 N5 Cli Al C4 Ni

C2 Vi C9 N4 W3 X3 C5 N2 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3
C13 Y2 C14 V6 W2 X2 C19 V7 C18 Yl Wi Xl))

(Il-COHN Wi)
(12-CONN C19)
(13-CONH C22)
(Il-VAL 0)
(12-VAL 1)
(13-VAL 1)
(0-COHN C36)
(0-VAL 1)

(DEFINE-INSTANCE N9

(:print-name "IN9"1

72

:doc-stririg
:is NANDGATE-31)

(SOURCE-LIST
(N9 C25 A6 C20 A4 C17 N6 C15 V5 C36 NS C22 A3 C12 A2

CIO N3 CS V4 C16 N5 ClI Al C4 Ni C2 Vi C9 N4 W3 X3 C5
N42 Cl Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2 X2
C19 V7 C18 Yl Wi Xl C28 V10 WO XO C24 YO))

(Il-CONN C24)
(12-CONN C25)
(13-CONN C28)
(Ti-VAL 0)
(12-VAL 1)
(13-VAL 1)
(O-CONN C29)
(0-VAL 1)

(DEFINE-INSTANCE N410
(:print-name "IN101
:doc-striig Il
:is NANDGATE-31)

(SOURCE-LIST
(1410 WO XO C26 A5 C22 A3 C16 N5 C14 V6 C23 N7 C18 Yb

C20 A4 C17 N46 C12 A2 C10 N3 C8 V4 C15 V5 C13 Y2 W2 X2
Cll Al C4 Ni C2 Vl C9 N4 W3 X3 C5 142 Cl Y4 C3 Y2 W4 X4
C7 V3 C6 Y3 C21 V8 Wi Xi C27 V9 C24 YO))

(Ii-CONN WO)
(12-CONN C27)
(13-CONN C26)
(Il-VAL 0)
(12-VAL 1)
(13-VAL 1)
(O-CONN C30)
(0-VAL 1)

(DEFINE-INSTANCE Ri
(:print-name "Ri"1
:doc-striig Il
:is NORGATE)

(SOURCE-LIST
(Ri C33 Vii C31 A7 C25 A6 C36 N8 C19 V7 C30 1410 WO

XO C26 A5 C22 A3 C16 145 C14 V6 C23 F~7 C18 Yl C20 A4 C17
N46 C12 A2 C10 143 C8 V4 C15 V5 C13 Y2 W2 X2 Cli Al C4 Ni
C2 Vi C9 N4 W3 X3 C5 N2 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3
C21 7? Wl X7_ f"* 179 C24 YO C34 V12 C32 A8 C26 A5 C23 147
C21 V8 C29 149 C25 A6 C20 A4 C17 146 C15 V5 C36 148 C22 A3
C12 A2 C10 N3 C8 V4 C16 N5 Cl Al C4 Ni C2 Vi C9 N4 W3
X3 C5 N42 Ci Y4 C3 V2 W4 X4 C7 V3 C6 Y3 C13 Y2 C14 V6 W2
X2 C19 V7 C18 Yi Wi Xl C28 V10 WO XO C24 YO))

(0-VAL 1)
(Il-CONN C33)

73

(12-CONN C34)
(O-CONN C35)
(12-VAL 0)
(Il-VAL 0))

(Make-sponsor 'VALUE-PROPAGATION-RULES
:doc-string ""
:super-sponsor 'TOP-SPONSOR
:state :ENABLED)

(Make-sponsor 'PORT-RULES
:doc-string ""
:super-sponsor 'VALUE-PROPAGATION-RULES
:state :ENABLED)

(Make-sponsor 'BOARD-PORT-RULES
:doc-string ""
:super-sponsor 'VALUE-PROPAGATION-RULES
:state :ENABLED)

(Make-sponsor 'FDS-RULES
:doc-string ""
:super-sponsor 'TOP-SPONSOR
:state :ENABLED)

(DEFINE-RULE DIAGNOSE-NEXT-RULE
(:print-name "DIAGNOSE-NEXT-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 0
:sponsor TOP-SPONSOR)

(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE
WITH STATUS :DIAGNOSE-NEXT)

THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(EVALUATE (DIAGNOSE-NEXT)))

(DEFINE-RULE 1-IJUNCTION-IN-RULE
(:print-name "I-IJUNCTION-IN-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 500
:sponsor PORT-RULES)

(INSTANCE ?X IS 1-IJUNCTION

74

WITH I-CONN ?Y)
(INSTANCE ?Y IS CONNECTOR

WITH VAL ?V)
THEN
(INSTANCE ?X IS 1-IJUNCTION

WITH I-VAL ?V))

(DEFINE-RULE 3-1JUNCTION-OUT-RULE
(:print-name "3-1JUNCTION-OUT-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 500
:sponsor PORT-RULES)

(INSTANCE ?X IS 3-2JUNCTION
WITH O-CONN ?Y
WITH O-VAL ?V)

THEN
(INSTANCE ?Y IS CONNECTOR

WITH VAL ?V))

(DEFINE-RULE 1-IJUNCTION-OUT-RULE
(:print-name "1-1JUNCTION-OUT-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
.certainty 1.0
:explanation-string ""
:priority 500
:sponsor PORT-RULES)
(INSTANCE ?X IS 1-IJUNCTION

WITH O-CONN ?Y
WITH O-VAL ?V)

THEN
(INSTANCE ?Y IS CONNECTOR

WITH VAL ?V))

(DEFINE-RULE 2-1JUNCTION-OUT-RULE
(:print-name "2-1JUNCTION-OUT-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 500
:sponsor PORT-RULES)

(INSTANCE ?X IS 2-1JUNCTION
WITH O-CONN ?Y
WITH O-VAL ?V)

THEN

75

(INSTANCE ?Y IS CONNECTOR
WITH VAL ?V))

(DEFINE-RULE 3-lJUNCTION-IN-RULE3
(:print-name "3-1JUNCTION-IN-RULE3"
:doc-string Il
:dependency NIL
:direction : FORWARD
:certainty 1.0
explanation-string fl
:priority 500
sponsor PORT-RULES)

(INSTANCE ?X IS 3-IJUNCTION
WITH 13-CONN ?Y)

(INSTANCE ?Y IS CONNECTOR
WITH VAL ?V)

THEN
(INSTANCE ?X IS 3-iJUNCTION

WITH 13-VAL ?V))

(DEFINE-RULE 3-1JUNCTION-IN-RULE2
(:print-name "13-1JUNCTION-IN-RULE2"1
:doc-string Il
:dependency NIL
direction :FORWARD
:certainty 1.0
explanation-string fil
:priority 500
sponsor PORT-RULES)

(INSTANCE ?X IS 3-IJUNCTION
WITH 12-CONN ?Y)

(INSTANCE ?Y IS CONNECTOR
WITH VAL ?V)

THEN
(INSTANCE ?X IS 3-iJUNCTION

WITH 12-VAL ?V))

(DEFINE-RULE 3-IJUNCTION-IN-RULEl
(:print-name "13-lJUNCTION-IN-RULE1l"
:doc-string Il
:dependency NIL
direction :FORWARD
:certainty 1.0
:explanation-string
:priority 500
sponsor PORT-RULES)

(INSTANCE ?X IS 3-IJUNCTION
WITH Il-CONN ?Y)

(INSTANCE ?Y IS CONNECTOR
WITH VAL ?V)

THEN
(INSTANCE ?X IS 3-iJUNCTION

76

WITH Il-VAL ?V))

(DEFINE-RULE 2-1JUNCTION-IN-RULE2
(:print-name "2-1JUNCTION-IN-RULE2"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 500
:sponsor PORT-RULES)
(INSTANCE ?X IS 2-1JUNCTION

WITH 12-CONN ?Y)
(INSTANCE ?Y IS CONNECTOR

WITH VAL ?V)
THEN
(INSTANCE ?X IS 2-1JUNCTION

WITH 12-VAL ?V))

(DEFINE-RULE 2-1JUNCTION-IN-RULE1
(:print-name "2-1JUNCTION-IN-RULE1"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string
:priority 500
:sponsor PORT-RULES)

(INSTANCE ?X IS 2-1JUNCTION
WITH II-CONN ?Y)

(INSTANCE ?Y IS CONNECTOR
WITH VAL ?V)

THEN
(INSTANCE ?X IS 2-1JUNCTION

WITH Il-VAL ?V))

(DEFINE-RULE CREATE-INPUTSET-RULE
(:print-name "CREATE-INPUTSET-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""
:priority 950
:sponsor FDS-RULES)

(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE
WITH STATUS :CREATE-INPUTS)

THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(EVALUATE (CREATE-INPUTSET)))

77

(DEFINE-RULE BOARD-INPORT-RULE
(:print-name "BOARD-INPORT-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string
:priority 500
:sponsor BOARD-PORT-RULES)
(INSTANCE ?X IS BOARD-INPUT-PORT

WITH CONN ?Y
WITH VAL ?V)

THEN
(INSTANCE ?Y IS CONNECTOR

WITH VAL ?V))

(DEFINE-RULE START-WITH-WELCOME-SCREEN
(:print-name 1START-WITI- -- ECOMr-SCREEN:
:doc-string "This causes the welcome-screen to be dis-

played when the FAULT-DIAGNOSIS-SYSTEM is :started"
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""
:priority 950
:sponsor FDS-RULES)
(INSTANCE FAULT-DIAGNOSIS-SYSTEM IS SCREEN-CONTROL

WITH STATUS :STARTED)
THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(INSTANCE FAULT-DIAGNOSIS-SYSTEM IS SCREEN-CONTROL

WITH STATUS :RUNNING
WITH NEW-SCREEN WELCOME-SCREEN))

(DEFINE-RULE CREATE-MODULE-RULE
(:print-name "CREATE-MODULE-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 900
:sponsor FDS-RULES)
(INSTANCE ACQUISITION-MENU IS POPUP-CHOOSE

WITH ANSWER ?MOD-CLASS)
THEN
(EVALUATE (CREATE-MODULE-INSTANCE (CADR ?MOD-CLASS))))

(DEFINE-RULE CLEAR-INSTANCE-RULE
(:print-name "CLEAR-INSTANCE-RULE"
:doc-string

78

:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string
:priority 900
:sponsor FDS-RULES)
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :CLEAR)
THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(EVALUATE (CLEAR-CIRCUIT-INSTANCES)))

(DEFINE-RULE CLEAR-SINGLE-RULE
(:print-name "CLEAR-SINGLE-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 950
:sponsor FDS-RULES)

(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE
WITH STATUS :CLEAR-SINGLE)

THEN
(EVALUATE (CLEAR-SINGLE-MODULE)))

(DEFINE-RULE LIST-MODULES-RULE
(:print-name "LIST-MODULES-RULE"
:doc-string "l
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""
:priority 950
:sponsor FDS-RULES)
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :VIEW)
THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(EVALUATE (LIST-VIEW-MODULES)))

(DEFINE-RULE DISPLAY-MODULE-RULE
(:print-name "DISPLAY-MODULE-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 900
:sponsor FDS-RULES)

79

(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE
WITH DISPLAY-MODULE ?AODNAME)

THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH INSTRUCTIONS ("Circuit Module: " ?MODNAME)
WITH STATUS :NO)

(EVALUATE (DISPLAY-MODULE-METHCJ ?MODNAME)))

(DEFINE-RULE APPLY-INPUTSET-RULE
(:print-name "APPLY-INPUTSET-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 950
:sponsor FDS-RULES)
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :APPLY-INPUTS)
THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(EVALUATE (APPLY-INPUTSET)))

(DEFINE-RULE BEST-TEST-RULE
(:print-name "BEST-TEST-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""
:priority 950
:sponsor FDS-RULES)

(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE
WITH STATUS :BEST-TEST)

THEN
(INSTAITCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(EVALUATE (BEST-TEST)))

(DEFINE-RULE MAKE-TEST-RULE
(:print-name "MAKE-TEST-RULE"
:doc-string I"
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""
:priority 950
:sponsor FDS-RULES)
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :MAKE-TEST)
THEN

80

(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE
WITH STATUS :NO)

(EVALUATE (MAKE-TEST)))

(DEFINE-RULE CHECK-OUTPUT-RULE
(:print-name "CHECK-OUTPUT-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string ""

:priority 300
:sponsor FDS-RULES)
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :CHECK-OUTPUT)
THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :NO)
(EVALUATE (FIRE-ALL-RULES))

(EVALUATE (INITIAL-INFERENCE-DATA)))

(DEFINE-RULE BOARD-OUTPORT-RULE
(:print-name "BOARD-OUTPORT-RULE"
:doc-string ""
:dependency NIL
:direction :FORWARD
:certainty 1.0
:explanation-string
:priority 500
:sponsor BOARD-PORT-RULES)

(INSTANCE ?X IS BOARD-OUTPUT-PORT
WITH CONN ?Y)

(INSTANCE ?Y IS CONNECTOR
WITH VAL ?V)

THEN
(INSTANCE ?X IS BOARD-OUTPUT-PORT

WITH VAL ?V))

(DEFINE-RULE FORGET-ALL-RULE
(:print-name "FORGET-ALL-RULE"
:doc-string ""
:dependency NIL
:dire-ction :FORWARD
:certainty 1.0
:priority 0
:sponsor TOP-SPONSOR)
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WITH STATUS :FORGET-ALL)
THEN
(INSTANCE DIAGNOSIS-SESSION IS USER-INTERFACE

WT TH STATUS :NO) a
(EVALUATE (FORGET-ALL)))

81

